Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Int J Chron Obstruct Pulmon Dis ; 19: 1093-1103, 2024.
Article En | MEDLINE | ID: mdl-38800522

Purpose: Whether Internet of Things (IoT)-based home respiratory muscle training (RMT) benefits patients with comorbid chronic obstructive pulmonary disease (COPD) remains unclear. Therefore, this study aims to evaluate the effectiveness of IoT-based home RMT for patients with COPD. Patients and Methods: Seventy-eight patients with stable COPD were randomly divided into two groups. The control group received routine health education, while the intervention group received IoT-based home RMT (30 inspiratory muscle training [IMT] and 30 expiratory muscle training [EMT] in different respiratory cycles twice daily for 12 consecutive weeks). Assessments took place pre-intervention and 12 weeks post-intervention, including lung function tests, respiratory muscle strength tests, the mMRC dyspnea scale, CAT questionnaires, the HAMA scale, and 6-month COPD-related readmission after intervention. Results: Seventy-four patients with COPD were analyzed (intervention group = 38, control group = 36), and the mean age and FEV1 of the patients were 68.65 ± 7.40 years, 1.21 ± 0.54 L. Compared to those of the control population, the intervention group exhibited higher FEV1/FVC (48.23 ± 10.97 vs 54.32 ± 10.31, p = 0.016), MIP (41.72 ± 7.70 vs 47.82 ± 10.99, p = 0.008), and MEP (42.94 ± 7.85 vs 50.29 ± 15.74, p = 0.013); lower mMRC (2.00 [2.00-3.00] vs 1.50 [1.00-2.00], p < 0.001), CAT (17.00 [12.00-21.75] vs 11.00 [9.00-13.25], p < 0.001), and HAMA (7.00 [5.00-9.00] vs 2.00 [1.00-3.00], p < 0.001) scores; and a lower incidence rate of 6-month readmission (22% vs 5%, p = 0.033). Conclusion: Compared with no intervention, IoT-based home RMT may be a more beneficial intervention for patients with COPD.


Breathing Exercises , Lung , Pulmonary Disease, Chronic Obstructive , Recovery of Function , Respiratory Muscles , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Male , Female , Aged , Breathing Exercises/methods , Middle Aged , Treatment Outcome , Lung/physiopathology , Time Factors , Respiratory Muscles/physiopathology , Forced Expiratory Volume , Exercise Tolerance , Muscle Strength , Home Care Services , Patient Readmission , Patient Education as Topic/methods , Internet-Based Intervention , Vital Capacity
2.
Adv Healthc Mater ; 13(12): e2303462, 2024 May.
Article En | MEDLINE | ID: mdl-38243745

Oxidative stress (OS) is one of the crucial molecular events of secondary spinal cord injury (SCI). Basic fibroblast growth factor (bFGF) is a multipotent cell growth factor with an anti-oxidant effect. However, bFGF has a short half-life in vivo, which limits its therapeutic application. Biodegradable polymers with excellent biocompatibility have been recently applied in SCI. The negative aspect is that polymers cannot provide a significant therapeutic effect. Betulinic acid (BA), a natural anti-inflammatory compound, has been polymerized into poly (betulinic acid) (PBA) to serve as a drug carrier for bFGF. This study explores the therapeutic effects and underlying molecular mechanisms of PBA nanoparticles (NPs) loaded with bFGF (PBA-bFGF NPs) in SCI. Results show that PBA-bFGF NPs produce remarkable biocompatibility in vivo and in vitro. The results also demonstrate that local delivery of PBA-bFGF NPs enhances motor function recovery, inhibits OS, mitigates neuroinflammation, and alleviates neuronal apoptosis following SCI. Furthermore, the results indicate that local delivery of PBA-bFGF NPs activates the nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling pathway following SCI. In summary, results suggest that local delivery of PBA-bFGF NPs delivers potential therapeutic advantages in the treatment and management of SCI.


Betulinic Acid , Fibroblast Growth Factor 2 , Nanoparticles , Spinal Cord Injuries , Animals , Male , Rats , Apoptosis/drug effects , Betulinic Acid/chemistry , Drug Carriers/chemistry , Fibroblast Growth Factor 2/administration & dosage , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/pharmacology , Nanoparticles/chemistry , Nanoparticles/therapeutic use , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Polymers/chemistry , Rats, Sprague-Dawley , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy
3.
Int J Biol Sci ; 19(8): 2475-2494, 2023.
Article En | MEDLINE | ID: mdl-37215981

Spinal cord injury (SCI) is a devastating neurological disorder that often results in loss of motor and sensory function. Diabetes facilitates the blood-spinal cord barrier (BSCB) destruction and aggravates SCI recovery. However, the molecular mechanism underlying it is still unclear. Our study has focused on transient receptor potential melastatin 2 (TRPM2) channel and investigated its regulatory role on integrity and function of BSCB in diabetes combined with SCI rat. We have confirmed that diabetes is obviously not conductive to SCI recovery through accelerates BSCB destruction. Endothelial cells (ECs) are the important component of BSCB. It was observed that diabetes significantly worsens mitochondrial dysfunction and triggers excessive apoptosis of ECs in spinal cord from SCI rat. Moreover, diabetes impeded neovascularization in spinal cord from SCI rat with decreases of VEGF and ANG1. TRPM2 acts as a cellular sensor of ROS. Our mechanistic studies showed that diabetes significantly induces elevated ROS level to activate TRPM2 ion channel of ECs. Then, TRPM2 channel mediated the Ca2+ influx and subsequently activated p-CaMKII/eNOS pathway, and which in turn triggered the ROS production. Consequently, over-activation of TRPM2 ion channel results in excessive apoptosis and weaker angiogenesis during SCI recovery. Inhibition of TRPM2 with 2-Aminoethyl diphenylborinate (2-APB) or TRPM2 siRNA will ameliorate the apoptosis of ECs and promote angiogenesis, subsequently enhance BSCB integrity and improve the locomotor function recovery of diabetes combined with SCI rat. In conclusion, TRPM2 channel may be a key target for the treatment of diabetes combined with SCI rat.


Diabetes Mellitus , Spinal Cord Injuries , TRPM Cation Channels , Rats , Animals , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Diabetes Mellitus/metabolism , Blood-Brain Barrier/metabolism
4.
Opt Lett ; 47(23): 6061-6064, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-37219172

We propose a single-shot lens-free phase retrieval (SSLFPR) method in a lens-free on-chip microscopy (LFOCM) system based on a partially coherent light emitting diode (LED) illumination. The finite bandwidth (∼23.95 nm) of LED illumination is divided into a series of quasi-monochromatic components according to the LED spectrum measured by a spectrometer. When the "virtual wavelength scanning" phase retrieval method is combined with the dynamic phase support constraint, the resolution loss caused by the spatiotemporal partial coherence of the light source can be effectively compensated. At the same time, the nonlinearity characteristics of the support constraint help to further improve the imaging resolution, accelerate the convergence of the iteration process, and greatly eliminate the artifacts. Based on the proposed SSLFPR method, we demonstrate that the phase information of samples (including phase resolution target and polystyrene microspheres) illuminated by a LED can be accurately retrieved based on one single diffraction pattern. The SSLFPR method has a half-width resolution of 977 nm across a large field-of-view (FOV) of 19.53 mm2, which is 1.41 × the resolution of the conventional approach. We also imaged living Henrietta Lacks (HeLa) cells cultured in vitro, further demonstrating the real-time single-shot quantitative phase imaging (QPI) capability of SSLFPR for dynamic samples. Given its simple hardware, high throughput, and single-frame high-resolution QPI capability, SSLFPR is expected to be adopted in a wide range of biological and medical applications.

5.
Opt Lett ; 46(10): 2408, 2021 May 15.
Article En | MEDLINE | ID: mdl-33988595

In this erratum, we correct Fig. 4 of our Letter [Opt. Lett.46, 1740 (2021)OPLEDP0146-959210.1364/OL.422095]. This does not change the scientific conclusions of the original Letter.

6.
Opt Lett ; 46(9): 2023-2026, 2021 May 01.
Article En | MEDLINE | ID: mdl-33929409

We propose a lensfree on-chip microscopy approach for wide-field quantitative phase imaging (QPI) based on wavelength scanning. Unlike previous methods, we found that a relatively large-range wavelength diversity not only provides information to overcome spatial aliasing of the image sensor but also creates sufficient diffraction variations that can be used to achieve motion-free, pixel-super-resolved phase recovery. Based on an iterative phase retrieval and pixel-super-resolution technique, the proposed wavelength-scanning approach uses only eight undersampled holograms to achieve a half-pitch lateral resolution of 691 nm across a large field-of-view of 29.85mm2, surpassing 2.41 times the theoretical Nyquist-Shannon sampling resolution limit imposed by the pixel size of the sensor (1.67 µm). We confirmed the effectiveness of this technique in QPI and resolution enhancement by measuring the benchmark quantitative phase microscopy target. We also showed that this method can track HeLa cell growth within an incubator, revealing cellular morphologies and subcellular dynamics of a large cell population over an extended period of time.

7.
Opt Lett ; 46(7): 1740-1743, 2021 Apr 01.
Article En | MEDLINE | ID: mdl-33793532

As a well-established deterministic phase retrieval approach, the transport of intensity equation (TIE) is able to recover the quantitative phase of a sample under coherent or partially coherent illumination with its through-focus intensity measurements. Nevertheless, the inherent paraxial approximation limits its validity to low-numerical-aperture imaging and slowly varying objects, precluding its application to high-resolution quantitative phase imaging (QPI). Alternatively, QPI can be achieved by phase deconvolution approaches based on the coherent contrast transfer function or partially coherent weak object transfer function (WOTF) without invoking paraxial approximation. But these methods are generally appropriate for "weakly scattering" samples in which the total phase delay induced by the object should be small. Consequently, high-resolution high-accuracy QPI of "nonweak" phase objects with fine details and large phase excursions remains a great challenge. In this Letter, we propose a mixed-transfer-function (MTF) approach to address the dilemma between measurement accuracy and imaging resolution. By effectively merging the phases reconstructed by TIE and WOTF in the frequency domain, the high-accuracy low-frequency phase "global" profile can be secured, and high-resolution high-frequency features can be well preserved simultaneously. Simulations and experimental results on a microlens array and unstained biological cells demonstrate the effectiveness of MTF.

8.
Ying Yong Sheng Tai Xue Bao ; 23(2): 519-24, 2012 Feb.
Article Zh | MEDLINE | ID: mdl-22586981

By adopting PCR-RFLP and 16S rDNA sequencing, this paper analyzed the genetic diversity and phylogeny of 40 endophytic bacterial strains isolated from Caragana spp. root nodules, and determined the salt resistance, acid- and alkali resistance, and growth temperature range of the strains. A total of 9 genotypes were obtained from the 40 strains by RFLP. The 16S rDNA sequencing, morphological observation, and biochemical test of representative strains showed that the strains belonged to Bacillus, Inquilinus, Shinella and Acinetobacter, respectively, and had rich genetic diversity. 57.5% of the strains could tolerate 4% NaCl stress, 75% of the strains could grow in YMA medium with an initial pH 11.0, and 85% of the strains could survive after heat shock treatment at 60 degrees C, suggesting that the endophytic bacteria of Caragana spp. had strong resistance capacity. Among the strains, LWEN 07 and LWEN 15 were most resistant.


Caragana/microbiology , Endophytes/physiology , Genetic Variation , Root Nodules, Plant/microbiology , Salt Tolerance/physiology , Acids , Acinetobacter/genetics , Acinetobacter/isolation & purification , Acinetobacter/physiology , Alkalies , Bacillus/genetics , Bacillus/isolation & purification , Bacillus/physiology , Endophytes/genetics , Endophytes/isolation & purification , Phylogeny , Sodium Chloride , Stress, Physiological
...