Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(26): 18519-18527, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38860246

RESUMEN

The traditional pyridine nitrogen oxide-based antimicrobial agents are often associated with health risks due to heavy metal enrichment. To mitigate this concern, we synthesized two novel complexes, Pr2(mpo)6(H2O)2 and Pr(hpo)(mpo)2(H2O)2, and integrated rare-earth salts, Hhpo (2-hydroxypyridine-N-oxide) and Nampo (2-mercapto-pyridine-N-oxide sodium salt). These complexes were characterized through infrared analysis, elemental analysis, thermogravimetric analysis, and X-ray crystallographic analysis. Our comparative analyses demonstrate that the synthesized rare-earth complexes exhibit stronger antimicrobial activity against Staphylococcus aureus (S. aureus ATCC6538) and Escherichia coli (E. coli ATCC25922) compared to the ligands and rare-earth salts alone. Quantitative results revealed the lowest inhibitory concentrations of the two complexes against S. aureus ATCC6538 and E. coli ATCC25922 at 3.125 µg mL-1, 6.25 µg mL-1, 3.125 µg mL-1 and 6.25 µg mL-1, respectively. Preliminary investigations indicated that the antibacterial mechanism of these complexes involved promoting intracellular substance exudation to achieve antibacterial effects. Incorporation of these complexes into polymeric antimicrobial films resulted in a potent antimicrobial effect, achieving a 100% inhibition rate against S. aureus ATCC6538 and E. coli ATCC25922 at a low addition level of 0.6 wt%. Our results suggest that nitrogen oxide-based praseodymium complexes have potential for various antimicrobial applications.

2.
Int J Biol Macromol ; 271(Pt 2): 132529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777010

RESUMEN

The poor UV shielding property of PLA limit it further applications on food packaging. The rare-earth complex Eu(DBM)3phen converts absorbed ultraviolet (UV) light to red light, which inspires the development of new UV shielding materials. However, this complex has low photostability and decomposes easily under UV irradiation. Thus, we prepared a long-lasting rare-earth complex transluminant Eu(DBM)2(BP-2)phen by introducing BP-2 into Eu(DBM)3phen, and blended it with PLA to obtain PLA/Eu(DBM)2(BP-2)phen composite films. The test results showed that the complex could reduce the UV transmittance of PLA films by emitting luminescence and heat. The UV transmittance of the composite film with 0.5 % mass fraction decreased from 87.4 % to 7.7 %, compared to pure PLA films, and remained at 11.6 % after 12 days of UV aging. The film had long-lasting UV shielding performance, good transparency and mechanical properties. Finally, In the storage experiments of flaxseed oil, the P/E25 film effectively retarded the oxidation process of the oil.


Asunto(s)
Europio , Embalaje de Alimentos , Poliésteres , Rayos Ultravioleta , Poliésteres/química , Europio/química , Embalaje de Alimentos/métodos , Aceite de Linaza/química
3.
Int J Biol Macromol ; 271(Pt 1): 132636, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795567

RESUMEN

The synthesis and characterization of [Ce2(PPPA)4(OH)2]·4H2O, wherein PPPA denotes 3-(hydroxy(phenyl)phosphoryl)propanoate, were conducted. Its potential as a flame-retardant additive for poly(L-lactic acid) (PLA) in conjunction with ammonium polyphosphate (APP) was investigated. Remarkably, with just incorporation of the 1 % Ce-complex and 4 % APP, the resulting PLA composite (PLA-8) meets the V-0 standard, exhibiting an impressive limiting oxygen index (LOI) of 29.4 %. Moreover, the introduction of the Ce-complex leads to a significant extension of ignition time (TTI), a significant 24.1 % decrease in total heat release (THR) compared to pure PLA, and a notable increase in residual carbon rate from 0.3 % to 3.51 %. Although PLA-8 exhibits a minor decline of 8.7 % in tensile strength and 3.4 % in elongation at break, respectively, compared to pure PLA, there is a substantial improvement of 32.2 % in Young's modulus and 29.9 % in impact resistance. These results emphasise the potential of cerium-based phosphorus-containing flame retardants, with cerium playing a key role in enhancing the flammability characteristics of PLA. This study contributes to the development of sustainable and fire-resistant materials in polymer chemistry.


Asunto(s)
Cerio , Retardadores de Llama , Fósforo , Poliésteres , Retardadores de Llama/síntesis química , Poliésteres/química , Poliésteres/síntesis química , Cerio/química , Fósforo/química , Resistencia a la Tracción , Polifosfatos/química
4.
Polymers (Basel) ; 16(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38337204

RESUMEN

The packaging problem with petroleum-based synthetic polymers prompts the development of edible packaging films. The high value-added reuse of navel orange peel pomace, which is rich in bioactive compounds, merited more considerations. Herein, nanocellulose (ONCC) and soluble dietary fiber (OSDF) from navel orange peel pomace are firstly used to prepare dietary fiber-based edible packaging films using a simple physical blend method, and the impact of ONCC on the film's properties is analyzed. Adopting three methods in a step-by-step approach to find the best formula for edible packaging films. The results show that dietary-fiber-based edible packaging films with 4 wt.% ONCC form a network structure, and their crystallinity, maximum pyrolysis temperature, and melting temperature are improved. What's more, dietary-fiber-based edible packaging films have a wide range of potential uses in edible packaging.

5.
ACS Appl Bio Mater ; 7(1): 104-113, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149377

RESUMEN

The pursuit of environmentally friendly and highly effective antifouling materials for marine applications is of paramount importance. In this study, we successfully synthesized novel rare earth-based complexes by coordinating cerium (Ce III), samarium (Sm III), and europium (Eu III) with pyrithione (1-hydroxy-2-pyridinethione; PT). Extensive characterizations were performed, including single-crystal X-ray analysis, which revealed the intriguing binuclear structure of these complexes. This structural motif comprises two rare-earth ions intricately double-bridged by two oxygen atoms from the PT ligand, resulting in a distinctive and intriguing geometry. Furthermore, the central rare earth ion is surrounded by three sulfur atoms and two additional oxygen atoms, forming a unique distorted bicapped trigonal prismatic configuration. Compared with conventional antifouling biocides such as sodium pyrithione (NaPT), copper pyrithione (CuPT), and zinc pyrithione (ZnPT), these newly synthesized rare-earth complexes exhibited a remarkable boost in their in vitro antibacterial efficacy against both Gram-positive and Gram-negative bacteria. Additionally, these complexes demonstrated significant potential as antialgal agents, displaying impressive activity against marine planktonic organisms. These findings underscore the promising application prospects of these rare-earth complexes in the field of marine antifouling.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Piridinas , Tionas , Antibacterianos/farmacología , Bacterias Grampositivas , Oxígeno
6.
Int J Biol Macromol ; 253(Pt 8): 127655, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37884247

RESUMEN

The development of edible packaging films was motivated due to resource waste and environmental damage caused by chemically produced plastic packaging. The development of edible packaging film based on grapefruit peel pomace dietary fiber has significant technological and functional potential because grapefruit processing waste is a potential source of high-quality dietary fiber. In this study, the first successful development of an edible packaging film based on dietary fiber using grapefruit soluble dietary fiber (GSDF) from grapefruit peel pomace as a substrate and nanocellulose (GNCC) as a filler was developed. Principal component analysis, membership function synthesis, and response surface methods were used to determine the optimal process to prepare the edible packaging films, and the impact of GNCC on this material was analyzed. The results showed that the overall performance score of the edible packaging film with 1 wt% GNCC was 0.764. The maximum pyrolysis temperature increased from 226.36 °C to 227.10 °C, the melting temperature (Tm) increased by 5.54 °C, the crystallinity increased by 2.95 %. The film solution exhibited non-Newtonian characteristics and a solid-like property. Our results showed that the edible packaging film developed from grapefruit peel pomace and dietary fiber could have several potential applications in the food packaging field.


Asunto(s)
Citrus paradisi , Películas Comestibles , Fibras de la Dieta , Embalaje de Alimentos/métodos
7.
Int J Biol Macromol ; 253(Pt 7): 127291, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37806420

RESUMEN

Resolving the flammability of poly(L-lactic acid) (PLA) while ensuring its environmental friendliness and preserving key flame retardancy and mechanical properties represents a critical challenge. We have successfully developed a highly efficient and environmentally friendly flame retardant called Hexamethylenediamine tetramethylene phosphonic acid amine (HDME). The flame retardancy of PLA/HDME composites was significantly improved, as indicated by the LOI value of 29.1 % and UL-94 V-0 rating for PLA/3.5 HDME with only 3.5 % HDME addition. The results show a 23.4 % reduction in the total heat release (THR), a 40.0 % increase in the time to ignition (TTI), and a 21.2 % increase in the flame propagation index (FPI) compared to original PLA. Flame retardant mechanism of HDME involves the gas phase, condensed phase, and interrupted heat exchange effects. The HDME also preserved the original mechanical properties of PLA, with the elongation at break and tensile strength retention of PLA/3.5 HDME reaching 93.05 % and 89.65 %. This work provides a simple and efficient method for flame retardant modification of PLA, which can expand its application scope.


Asunto(s)
Ciclobutanos , Retardadores de Llama , Poliésteres , Aminas
8.
J Food Sci ; 88(8): 3507-3523, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37458301

RESUMEN

Citrus fruits were widely used in processing and production, generating a large amount of peel pomace and a low utilization rate, resulting in substantial economic losses and environmental risks. It was important to extract compounds from citrus peel pomaces and find suitable preparation methods to improve their yield and physicochemical properties. Grapefruit peel pomace (GP) and navel orange peel pomace (OP) were used as raw materials in this study to prepare green and edible soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). Analysis was done on the effects of solid-liquid ratio, cellulase hydrolysis time, cellulase dosage, and ultrasonic time on dietary fiber (DF) yield. To obtain the best DF preparation conditions, we used range analysis, variance analysis, and orthogonal experimental design. We also analyzed the structural, physicochemical, and rheological characteristics of SDF and IDF. According to the study's findings, SDF and IDF showed a loose and expansive structure with reduced particle size, higher specific surface area, and noticeably better physical and chemical properties after treating GP and OP with ultrasound-assisted composite enzyme method. Both SDF solution and IDF suspension were discovered through rheological analysis to be non-Newtonian pseudoplastic fluids, which was advantageous for expanding their applications in the field of food packaging. In conclusion, DF prepared using the ultrasound-assisted composite enzyme method was an excellent source of edible packaging materials, offering a benchmark for the recycling of other citrus peel wastes and ultimately paving the way for new methods of recycling citrus waste.


Asunto(s)
Celulasas , Citrus sinensis , Citrus , Citrus sinensis/química , Tamaño de la Partícula , Fibras de la Dieta/análisis
9.
Polymers (Basel) ; 15(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37242922

RESUMEN

A new bio-based polyamide 56/512 (PA56/512) has been synthesized with a higher bio-based composition compared to industrialized bio-based PA56, which is considered a lower carbon emission bio-based nylon. In this paper, the one-step approach of copolymerizing PA56 units with PA512 units using melt polymerization has been investigated. The structure of the copolymer PA56/512 was characterized using Fourier-transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance (1H NMR). Other measurement methods, including relative viscosity tests, amine end group measurement, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), were used to analyze the physical and thermal properties of the PA56/512. Furthermore, the non-isothermal crystallization behaviors of PA56/512 have been investigated with the analytical model of Mo's method and the Kissinger method. The melting point of copolymer PA56/512 exhibited a eutectic point at 60 mol% of 512 corresponding to the typical isodimorphism behavior, and the crystallization ability of PA56/512 also displayed a similar tendency.

10.
Int J Biol Macromol ; 220: 56-66, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973481

RESUMEN

With the rapid development of the packaging industry, people have high requirements for the functionality of packaging materials. As a representative biodegradable packaging material, polylactic acid (PLA) still has some problems. Multifunctional additives in PLA are an effective modification method. In this paper, cerium lactate (Ce-LA) was synthesized by a precipitation method and integrated into PLA to prepare a functional PLA composite. The results showed that Ce-LA not only significantly improved the crystallinity but also imparted antibacterial ability to PLA. When the concentration of Ce-LA was 0.9 %, the crystallinity of PLA reached 39.35 %, which was 77 % higher than that of pure PLA. When the addition of Ce-LA was 1.8 %, the antibacterial rates of PLA against Staphylococcus aureus and Escherichia coli reached 93 % and 85 %, respectively. This study provides a beneficial solution for the development of PLA packaging materials with high crystallinity and antibacterial properties.


Asunto(s)
Cerio , Ácido Láctico , Antibacterianos/farmacología , Cerio/farmacología , Escherichia coli , Embalaje de Alimentos/métodos , Humanos , Poliésteres , Polímeros
11.
Materials (Basel) ; 14(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500972

RESUMEN

PLA is widely used in the field of disposable products for its good transparency, high strength, high modulus, and good processing performance. However, the crystallization rate and crystallinity of PLA are weak. In actual production, the PLA products that are typically obtained are amorphous with poor heat resistance, which greatly limits the application range of PLA products. Finding an effective nucleating agent to improve the transparency of PLA has been a hot topic in research. This study found that Cerium fluoride (CeF3) can effectively improve the crystallinity of PLA/CeF3 (P/F) films. When the content of CeF3 in PLA was 1 wt %, the retention ratio of visible light transmittance was 82.36%, the crystallinity was 29.8%, and the tensile strength was 59.92 MPa. Compared to pure PLA, the crystallinity of P/F1 increased by 56% and tensile strength increased by 8.76%. This study provided an alternative scheme that maintained the PLA film's transparency and improved the crystallinity of PLA, which significantly expanded the application of PLA.

12.
Materials (Basel) ; 13(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150825

RESUMEN

In this study, the morphology, rheological behavior, thermal behavior, and mechanical properties of a polyamide 6 (PA6) and olefin block copolymer (OBC) blend compatibilized with maleic anhydride-grafted polyethylene-octene copolymer (POE-g-MAH) were investigated. The morphological observations showed that the addition of POE-g-MAH enhanced the OBC particle dispersion in the PA6 matrix, suggesting a better interfacial compatibility between the pure PA6 and OBC. The results of the Fourier transform infrared (FTIR) spectroscopy analysis and the Molau test confirmed the compatibilization reactions between POE-g-MAH and PA6. The rheological test revealed that the melt viscosity, storage modulus (G'), and loss modulus (G") of the compatibilized PA6/OBC blends at low frequency were increased with the increasing POE-g-MAH content. The thermal analysis indicated that the addition of OBC had little effect on the crystallization behavior of PA6, while the incorporation of POE-g-MAH at high content (7 wt%) in the PA6/OBC blend restricted the crystallization of PA6. In addition, the compatibilized blends exhibited a significant enhancement in impact strength compared to the uncompatibilized PA6/OBC blend, in which the highest value of impact strength obtained at a POE-g-MAH content of 7 wt% was about 194% higher than that of pure PA6 under our experimental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...