Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 340: 122306, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858025

RESUMEN

In this study, a novel hydrogel, ß-cyclodextrin/carbon dots-grafted cellulose nanofibrils hydrogel (ßCCH), was fabricated for removal and fluorescence determination of levofloxacin (LEV). A comprehensive analysis was performed to characterize its physicochemical properties. Batch adsorption experiments were conducted, revealing that ßCCH reached a maximum adsorption capacity of 1376.9 mg/g, consistent with both Langmuir and pseudo-second-order models, suggesting that the adsorption process of LEV on ßCCH was primarily driven by chemical adsorption. The removal efficiency of ßCCH was 99.2 % under the fixed conditions (pH: 6, initial concentration: 20 mg/L, contact time: 300 min, temperature: 25 °C). The removal efficiency of ßCCH for LEV still achieved 97.3 % after five adsorption-desorption cycles. By using ßCCH as a fluorescent probe for LEV, a fast and sensitive method was established with linear ranges of 1-120 mg/L and 0.2-1.0 µg/L and a limit of detection (LOD) as low as 0.09 µg/L. The viability of ßCCH was estimated based on the economic analysis of the synthesis process and the removal of LEV, demonstrating that ßCCH was more cost-effective than commercial activated carbon. This study provides a novel approach for preparing a promising antibiotic detection and adsorption material with the advantages of stability, and cost-effectiveness.


Asunto(s)
Carbono , Celulosa , Hidrogeles , Levofloxacino , Nanofibras , beta-Ciclodextrinas , Levofloxacino/análisis , Levofloxacino/química , beta-Ciclodextrinas/química , Celulosa/química , Adsorción , Nanofibras/química , Carbono/química , Hidrogeles/química , Antibacterianos/análisis , Antibacterianos/química , Límite de Detección , Contaminantes Químicos del Agua/análisis , Colorantes Fluorescentes/química , Puntos Cuánticos/química , Fluorescencia
2.
J Hazard Mater ; 474: 134758, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38820756

RESUMEN

To remove iodine ion (I-) from wastewater, a novel hydrogel, the fluorescent cellulose nanofibrils-based hydrogel (FCNH), was synthesized to enable both detection and adsorption of I-. The FCNH comprised cellulose nanofibrils (CNs), silver nanoclusters (AgNCs), and MIL-125-NH2. It exhibited an excellent adsorption capacity for I-, with a maximum adsorption capacity of 373.7 mg/g, fitting both the Langmuir and pseudo-second-order models. Additionally, FCNH displayed excellent regeneration properties, retaining 88.0 % of its initial adsorption capacity after six adsorption-desorption cycles. Functioning as a fluorescent sensor, the synthesized FCNH enabled the detection of I- through dynamic quenching, with linear ranges of 5 to 200 mg/L and 0.2 to 1.0 µg/L, and a determination limit of 0.11 µg/L. Analysis of the adsorption and detection mechanisms revealed that FCNH's outstanding performance arose from its 3D porous structure comprising CNs, AgNCs, and MIL-125-NH2. Economic analysis indicated that FCNH was inexpensive compared to commercially available activated carbon. Thus, FCNH demonstrated significant potential as an economical and reusable adsorbent for iodine ion removal.

3.
Int J Biol Macromol ; 271(Pt 1): 132198, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821789

RESUMEN

To address the issue of bisphenol A (BPA) contamination in wastewater, a novel hydrogel, sodium alginate/cellulose nanofibrils/ZIF-8 composite hydrogel (SCZC), was synthesized for efficient BPA removal. The SCZC exhibited an exceptional adsorption capacity of 1696 mg/g, aligning well with both Langmuir and pseudo-second-order models. Furthermore, it exhibited remarkable regeneration properties, maintaining 89.1 % of its adsorption capacity even after undergoing five adsorption-desorption cycles. The synthesized SCZC also acted as a fluorescent sensor for detecting BPA, employing dynamic quenching and offering linear detection ranges of 10-100 mg/L and 0.2-1.0 µg/L, with a low detection limit of 0.06 µg/L. Analysis of adsorption and detection mechanisms revealed that SCZC's exceptional performance could be attributed to the three-dimensional (3D) porous structure formed by sodium alginate and cellulose nanofibrils. Economic analysis indicated that SCZC, in comparison to commercially activated carbon, was relatively inexpensive. This study introduces a novel approach for designing and preparing a sodium alginate-based hydrogel incorporating metal-organic frameworks, offering simultaneous BPA detection and removal capabilities.


Asunto(s)
Alginatos , Compuestos de Bencidrilo , Celulosa , Hidrogeles , Nanofibras , Fenoles , Contaminantes Químicos del Agua , Alginatos/química , Fenoles/análisis , Fenoles/química , Compuestos de Bencidrilo/análisis , Compuestos de Bencidrilo/química , Celulosa/química , Adsorción , Nanofibras/química , Hidrogeles/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Estructuras Metalorgánicas/química
4.
Nano Lett ; 24(17): 5260-5269, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639406

RESUMEN

High-temperature affordable flexible polymer-based pressure sensors integrated with repeatable early fire warning service are strongly desired for harsh environmental applications, yet their creation remains challenging. This work proposed an approach for preparing such advanced integrated sensors based on silver nanoparticles and an ammonium polyphosphate (APP)-modified laminar-structured bulk wood sponge (APP/Ag@WS). Such integrated sensors demonstrated excellent fire warning performance, including a short response time (minimum of 0.44 s), a long-lasting alarm time (>750 s), and reliable repeatability. Moreover, it achieved high-temperature affordable flexible pressure sensing that exhibited an almost unimpaired working range of 0-7.5 kPa and a higher sensitivity (in the low-pressure range, maximum to 226.03 kPa-1) after fire. The high stability was attributed to reliable structural elasticity, and the wood-derived amorphous carbon is capable of repeatable fire warnings. Finally, a Ag@APP/WS-based wireless fire alarm system that realized reliable house fire accident detection was demonstrated, showing great promise for smart firefighting application.

5.
Molecules ; 29(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474450

RESUMEN

The construction of networks within natural wood (NW) lumens to produce porous wood aerogels (WAs) with fascinating characteristics of being lightweight, flexible, and porous is significant for the high value-added utilization of wood. Nonetheless, how wood species affect the structure and properties of WAs has not been comprehensively investigated. Herein, typical softwood of fir and hardwoods of poplar and balsa are employed to fabricate WAs with abundant nanofibrillar networks using the method of lignin removal and nanofibril's in situ regeneration. Benefiting from the avoidance of xylem ray restriction and the exposure of the cellulose framework, hardwood has a stronger tendency to form nanofibrillar networks compared to softwood. Specifically, a larger and more evenly distributed network structure is displayed in the lumens of balsa WAs (WA-3) with a low density (59 kg m-3), a high porosity (96%), and high compressive properties (strain = 40%; maximum stress = 0.42 MPa; height retention = 100%) because of the unique structure and properties of WA-3. Comparatively, the specific surface area (SSA) exhibits 25-, 27-, and 34-fold increments in the cases of fir WAs (WA-1), poplar WAs (WA-2), and WA-3. The formation of nanofibrillar networks depends on the low-density and thin cell walls of hardwood. This work offers a foundation for investigating the formation mechanisms of nanonetworks and for expanding the potential applications of WAs.

7.
Chin Med ; 19(1): 42, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38444022

RESUMEN

BACKGROUND: Cayratia albifolia C.L.Li (CAC), commonly known as "Jiao-Mei-Gu" in China, has been extensively utilized by the Dong minority for several millennia to effectively alleviate symptoms associated with autoimmune diseases. CAC extract is believed to possess significant anti-inflammatory properties within the context of Dong medicine. However, an in-depth understanding of the specific pharmaceutical effects and underlying mechanisms through which CAC extract acts against rheumatoid arthritis (RA) has yet to be established. METHODS: Twenty-four Sprague-Dawley rats were divided into four groups, with six rats in each group. To induce the collagen-induced arthritis (CIA) model, the rats underwent a process of double immunization with collagen and adjuvant. CAC extract (100 mg/kg) was orally administered to rats. The anti-RA effects were evaluated in CIA rats by arthritis score, hind paw volume and histopathology analysis. Pull-down assay was conducted to identify the potential targets of CAC extract from RAW264.7 macrophage lysates. Moreover, mechanism studies of CAC extract were performed by immunofluorescence assays, real-time PCR and Western blot. RESULTS: CAC extract was found to obviously down-regulate hind paw volume of CIA rats, with diminished inflammation response and damage. 177 targets were identified from CAC extract by MS-based pull-down assay. Bioinformatics analysis found that these targets were mainly enriched in macrophage activation and neutrophils extracellular traps (NETs). Additionally, we reported that CAC extract owned significant anti-inflammatory activity by regulating PI3K-Akt-mTOR signal pathway, and inhibited NETosis in response to PMA. CONCLUSIONS: We clarified that CAC extract significantly attenuated RA by inactivating macrophage and reducing NETosis via a multi-targets regulation.

8.
Research (Wash D C) ; 7: 0317, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357698

RESUMEN

Silica glass, known for its brittleness, weight, and non-biodegradable nature, faces challenges in finding suitable alternatives. Transparent wood, made by infusing polymers into wood, shows promise but is hindered by limited availability of wood in China and fire risks associated with its use. This study explores the potential of utilizing bamboo, which has a shorter growth cycle, as a valuable resource for developing flame-retardant, smoke-suppressing, and superhydrophobic transparent bamboo. A 3-layered flame-retardant barrier, composed of a top silane layer, an intermediate layer of SiO2 formed through hydrolysis-condensation of Na2SiO3 on the surface, and an inner layer of Na2SiO3, has been confirmed to be effective in reducing heat release, slowing flame spread, and inhibiting the release of combustible volatiles, toxic smoke, and CO. Compared to natural bamboo and other congeneric transparent products, the transparent bamboo displays remarkable superiority, with the majority of parameters being notably lower by an entire order of magnitude. It achieves a long ignition time of 116 s, low total heat release (0.7 MJ/m2), low total smoke production (0.063 m2), and low peak CO concentration (0.008 kg/kg). Moreover, when used as a substrate for perovskite solar cells, the transparent bamboo displays the potential to act as a light management layer, leading to a marked efficiency enhancement of 15.29%. The excellent features of transparent bamboo make it an enticing choice for future advancements in flame-retardant glasses and optical devices.

9.
Int J Biol Macromol ; 259(Pt 2): 129306, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216008

RESUMEN

When wood is used as a stressed component of building materials, the parts most prone to failure are the upper and lower surfaces which can be called the weak structure. In a hydrothermal environment, lignin and hemicellulose in wood readily soften and dissolve, thus leading to their designation as the weak structure. The weak structures results in the wood having a low strength. In this paper, the sandwich beam material can be obtained by two steps from the skin self-reinforcement method, whereby the weak structure of the wood surface was removed by the delignification, and then the wood surface was densified. The authenticity of the sandwich structure is proved by a scanning electron microscope (SEM) and density profile analysis. When the moisture content (MC) is 10 %-12 % and the mass loss ratio is 23.04 %, the optimal resilience of the sandwich beam is only 1 %, the maximum modulus of rupture (MOR) and modulus of elasticity (MOE) are 1.42 and 2.1 times greater than those of natural wood, respectively. This finding shows that our method strengthens the weak structure of natural wood, which has good flexural performance and springback ratio.


Asunto(s)
Lignina , Madera , Lignina/química , Madera/química , Polisacáridos/química , Fenómenos Físicos
10.
Small ; 20(4): e2305857, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705126

RESUMEN

Strong, lightweight, and shape-memory cellulose aerogels have great potential in multifunctional applications. However, achieving the integration of these features into a cellulose aerogel without harsh chemical modifications and the addition of mechanical enhancers remains challenging. In this study, a strong, lightweight, and water-stimulated shape-memory all-cellulose aerogel (ACA) is created using a combination strategy of partial dissolution and unidirectional freezing from bamboo. Benefiting from the firm architecture of cellulose microfibers bridging cellulose nanofibers /regenerated cellulose aggregated layers and the bonding of different cellulose crystal components (cellulose Iß and cellulose II), the ACA, with low density (60.74 mg cm-3 ), possesses high compressive modulus (radial section: 1.2 MPa, axial section: 0.96 MPa). Additionally, when stimulated with water, the ACA exhibits excellent shape-memory features, including highly reversible compression-resilience and instantaneous fold-expansion behaviors. As a versatile scaffold, ACA can be integrated with hydroxyapatite, carboxyl carbon nanotubes, and LiCl, respectively, via a simple impregnation method to yield functionalized cellulose composites for applications in thermal insulation, electromagnetic interference shielding, and piezoresistive sensors. This study provides inspiration and a reliable strategy for the elaborately structural design of functional cellulose aerogels endows application prospects in various multifunction opportunities.

11.
Small ; 20(9): e2306970, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37867215

RESUMEN

Precise morphology design and electronic structure regulation are critically significant to promote catalytic activity and stability for electrochemical hydrogen production at high current density. Herein, the carbon nanotube (CNT) encapsulated Fe-doped NiCoP nanoparticles is in-situ grown in hierarchical carbonized wood (NCF0.5 P@CNT/CW) for water splitting. Coupling merits of porous carbonized wood (CW) substrate, CNT encapsulating and Fe doping, the NCF0.5 P@CNT/CW features remarkable and durable electrocatalytic activity. The overpotentials of NCF0.5 P@CNT/CW at 50 mA cm-2 mV and 205 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) and features high current density of 800 mA cm-2 within 300 mV for both OER and HER. Moreover, NCF0.5 P@CNT/CW displays outstanding overall water splitting performance (η50 = 1.62 V and η100 = 1.67 V), outperforming Pt/C║RuO2 (η50 = 1.74 V), and can achieve the current density of 700 mA cm-2 at a lower cell voltage of 1.78 V. Overpotential is only 4.0 % decay after 120 h measurement at 50 mA cm-2 . Density functional theory (DFT) calculations reveals Fe doping optimizes the binding energy and Gibbs free energy of intermediates, and regulates d-band center of NCF0.5 P@CNT/CW. Such synergistic strategy of morphology manipulation and electronic structure optimization provides a spark for developing effective and robust bifunctional catalysts.

12.
Carbohydr Polym ; 326: 121623, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142100

RESUMEN

A novel cellulose nanofibril/titanate nanofiber modified with CdS quantum dots hydrogel (CTH) was synthesized as an effective, stable, and recyclable photocatalytic adsorbent using cellulose nanofibril (CN), titanate nanofiber (TN), and CdS quantum dots. Within the CTH structure, CN formed an essential framework, creating a three-dimensional (3D) porous structure that enhanced the specific surface area and provided abundant adsorption sites for Cr(VI). Simultaneously, TN modified with CdS quantum dots (TN-CdS) served as a nanoscale Z-type photocatalyst, facilitating the efficient separation of photoinduced electrons and holes, further increasing the photocatalytic efficiency. The morphological, chemical, and optical properties of CTH were thoroughly characterized. The CTH demonstrated the maximum theoretical adsorption capacity of 373.3 ± 14.2 mg/g, which was 3.4 times higher than that of CN hydrogel. Furthermore, the photocatalytic reduction rate constant of the CTH was 0.0586 ± 0.0038 min-1, which was 6.4 times higher than that of TN-CdS. Notably, CTH displayed outstanding stability, maintaining 84.9 % of its initial removal efficiency even after undergoing five consecutive adsorption-desorption cycles. The remarkable performance of CTH in Cr(VI) removal was attributed to its 3D porous structure, comprising CN and TN-CdS. These findings provide novel insights into developing a stable photocatalytic adsorbent for Cr(VI) removal.

13.
J Colloid Interface Sci ; 658: 846-855, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157609

RESUMEN

Bimetallic phosphides exhibit superior electrocatalytic activities and synergistic effects that make them ideal electrocatalysts for the urea oxidation reaction (UOR). Herein, P, N-codoped carbon-encapsulated cobalt/nickel phosphides derived from NiCo-MOF-74 (NiCoP@PNC) and anchored on P-doped carbonized wood fiber (PCWF) for UOR were prepared through synchronous carbonization and phosphorization. By benefiting from the synergistic effect of structural and electronic modulation, NiCoP@PNC/PCWF exhibits excellent UOR electrocatalytic performance under alkaline conditions, achieving a current density of 50 mA cm-2 with a potential of only 1.34 V (vs reversible hydrogen electrode, RHE) and continuous operation for more than 72 h. In addition, for the overall urea splitting, an electrolyzer using UOR replaced OER, which required only 1.50 V to achieve a current density of 50 mA cm-2 with excellent stability, 230 mV less than that required for the HER||OER system. In-depth theoretical analysis further proves that the strong synergistic effect between Co and Ni optimizes electronic structures, yielding excellent UOR properties. The synergistic strategy of structural and electrical modulation provides broad prospects for the design and synthesis of excellent UOR electrocatalysts for energy-saving hydrogen production by using renewable resources.

14.
Small ; 20(21): e2308928, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098313

RESUMEN

Modulation of electronic structure and composition is widely recognized as an effective strategy to improve electrocatalyst performance. Herein, using a simple simultaneous carbonization and sulfidation strategy, NiFe double hydroxide-derived Fe5Ni4S8 (FNS) nanosheets immobilized on S-doped carbonized wood (SCW) framework by taking benefit of the orientation-constrained cavity and hierarchical porous structure of wood is proposed. Benefiting from the synergistic relationships between bimetal ions, the spatial confinement offered by the wood cavity, and the enhanced structural effects of the nanosheets array, the FNS/SCW exhibit enhanced intrinsic activity, increased accessibility of catalytically active sites, and convection-facilitated mass transport, resulting in an excellent oxygen evolution reaction (OER) activity and durability. Specifically, it takes a low overpotential of 230 mV at 50 mA cm-2 and potential increase is negligible (3.8%) at 50 mA cm-2 for 80 hours. Density functional theory (DFT) calculations further reveal that the synergistic effect of bimetal can optimize the electronic structure and lower the reaction energy barrier. The FNS/SCW used as the cathode of zinc-air battery shows higher power density and excellent durability relative to commercial RuO2, exhibiting a good application prospect. Overall, this research offers proposals for designing and producing effective OER electrocatalysts using sustainable resources.

15.
Int J Biol Macromol ; 250: 126197, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37558032

RESUMEN

Cellulose nanofiber (CNF) aerogels hold considerable potential in wearable devices as pressure sensors and flexible electrochemical energy storage. However, the undirectional assembly of CNFs results in poor mechanical performance, which limits their application in structural engineering. In this study, we propose an anisotropic aerogel with both elastic and conductive properties inspired by the micro-nanostructure of natural wood. One-dimensional TEMPO cellulose nanofibers (TOCNF) were utilized as structural building blocks, while two-dimensional reduced graphene oxide (rGO) served as the electron transfer platform, owing to their high mechanical strength. The directionally aligned tubular structure composed of multilayered sheets was formed through rapid unidirectional freezing and subsequent steam heating reduction. These structures efficiently transferred stress throughout the porous skeleton, resulting in TOCNF-rGO aerogels with high compressibility and excellent fatigue resistance (2000 cycles at 60 % strain). The aerogel also exhibited high sensitivity, wide detection range, relatively fast response, and excellent compression cycle stability, making it suitable for accurately detecting various human biological and motion signals. Additionally, TOCNF-rGO can be assembled into a flexible all-solid-state symmetric supercapacitor that delivers excellent electrochemical performance. It is expected that this biomass-derived aerogel will be a versatile material for flexible electronic devices for energy conversion and storage.

16.
Molecules ; 28(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049844

RESUMEN

Developing highly porous and conductive carbon electrodes is crucial for high-performance electrochemical double-layer capacitors. We provide a method for preparing supercapacitor electrode materials using zeolitic imidazolate framework-8 (ZIF-8)-coated wood fibers. The material has high nitrogen (N)-doping content and a specific surface area of 593.52 m2 g-1. When used as a supercapacitor electrode, the composite exhibits a high specific capacitance of 270.74 F g-1, with an excellent capacitance retention rate of 98.4% after 10,000 cycles. The symmetrical supercapacitors (SSCs) with two carbon fiber electrodes (CWFZ2) showed a high power density of 2272.73 W kg-1 (at an energy density of 2.46 W h kg-1) and an energy density of 4.15 Wh kg-1 (at a power density of 113.64 W kg-1). Moreover, the SSCs maintained 81.21% of the initial capacitance after 10,000 cycles at a current density of 10 A g-1, which proves that the SSCs have good cycle stability. The excellent capacitance performance is primarily attributed to the high conductivity and N source provided by the zeolite imidazole framework. Because of this carbon material's unique structural features and N-doping, our obtained CWFZ2 electrode material could be a candidate for high-performance supercapacitor electrode materials.

17.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770650

RESUMEN

Photocatalytic oxidation is considered one of the most effective ways to remove formaldehyde from indoor air. However, the use of powder photocatalysts is limited by their low adsorption capacity and strong aggregation tendency. Hence, there is a need for a composite material with good cycling stability and high degradation efficiency. In the present study, a unique wood-based composite is produced by arranging Cu-TiO2 nanoparticles on porous structured wood. The porous structure of wood can adsorb formaldehyde, and the abundant functional groups on the surface can act as a reaction platform for anchoring the Cu-TiO2 nanoparticles. Cu doping facilitates electron interaction between TiO2 and Cu, promotes the transfer of charge carriers, lowers the electron-hole recombination rate, and improves the photocatalytic degradation efficiency of formaldehyde. The photocatalytic efficiency of the wood-based composites was highest (85.59%) when the n(Cu)/n(Ti) ratio was 7%. After nine cycles, the wood composites still had a high degradation rate, indicating good recyclability. Overall, this wood composite is an eco-friendly and promising material for indoor air filtration.

18.
Int J Biol Macromol ; 233: 123566, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758761

RESUMEN

A novel nanocellulose/carbon dots hydrogel (NCH) was fabricated using cellulose nanofibrils (CN), carbon dots (CD) and zinc oxide (ZnO)/silver bromide (AgBr) nanocomposite, where CD enhanced amino group-induced adsorption of hexavalent chromium (Cr(VI)) and promoted the photocatalytic properties of ZnO/AgBr nanocomposite via the transfer of photogenerated electrons, resulting in enhanced efficiency in the removal of Cr(VI) from aqueous solution. The structure, morphology, and physicochemical properties of the prepared NCH were characterized, with the results of adsorption and photocatalysis experiments showing the maximum theoretical adsorption capacity of the NCH to be 315 mg/g, 219 times that of the ZnO/AgBr nanocomposite; the apparent removal rate constant of the NCH was 0.0319 min-1, 11.7 times that of the ZnO/AgBr nanocomposite. Furthermore, the removal performance of NCH was attributed to CD-enhanced synergistic adsorption and photocatalysis effects, supported by characterization and experimental results. This work provides insight into the design and fabrication of a novel adsorptive photocatalyst with CD-enhanced synergistic adsorption and photocatalysis effects for removing Cr(VI) from aqueous solution.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Óxido de Zinc , Carbono , Óxido de Zinc/química , Contaminantes Químicos del Agua/química , Adsorción , Hidrogeles , Cromo/química , Nanocompuestos/química
19.
iScience ; 26(2): 105964, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818307

RESUMEN

Traditional electrode materials still face vital challenges of few active sites, low porosity, complex synthesis process, and low specific capacitance. Herein, N-doped and 3D hierarchical porous graphene nanofoam (N-GNF) is created on carbon fibers (CFs) by employing a facile, fast, and environmentally friendly strategy of N2 plasma activation. After an appropriated N2 plasma activation, the graphene nanosheets (GNSs) synthesized by Ar/CH4 plasma deposition transform into N-GNF successfully. N doping donates rich active sites and increases the hydrophilia, while hierarchical nanoarchitecture exposes an enlarged effective contact area at the interface between electrode and electrolyte and affords sufficient space for accommodating more electrolytes. The as-assembled flexible N-GNF@CFs//Zn NSs@CFs Zn ion capacitor delivered a high energy density of 105.2 Wh kg-1 at 378.6 W kg-1 and initial capacity retention of 87.9% at the current of 2 A g-1 after a long cycle of 10,000.

20.
iScience ; 26(1): 105771, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36636346

RESUMEN

Nanocrystalline cellulose (NCC) preparation in an integrated fractionation manner is expected to solve the problems of low yield and environmental impact in the traditional process. An integrated fractionation strategy for NCC production from wood was developed through catalytic biomass fractionation, the partial dissolution of cellulose-rich materials (CRMs) in aqueous tetrabutylphosphonium hydroxide, and short-term ultrasonication. The presented process could tolerate a high CRM lignin content of 21.2 wt % and provide a high NCC yield of 76.6 wt % (34.3 wt % of the original biomass). The increase in the CRM lignin content decreased the NCC yield, facilitated the crystal transition of NCC from cellulose I to cellulose II, and showed no apparent effects on the NCC morphology. A partial/selective dissolution mechanism is proposed for the presented strategy. This study provided a promising efficient fractionation-based method toward comprehensive and high-value utilization of lignocellulosic biomass through effective delignification and high-yield NCC production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA