Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Ecol Evol ; 14(7): e11617, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952660

RESUMEN

Migratory birds experience changes in their environment and diet during seasonal migrations, thus requiring interactions between diet and gut microbes. Understanding the co-evolution of the host and gut microbiota is critical for elucidating the rapid adaptations of avian gut microbiota. However, dynamics of gut microbial adaptations concerning elevational migratory behavior, which is prevalent but understudied in montane birds remain poorly understood. We focused on the Himalayan bluetail (Tarsiger rufilatus) in the montane forests of Mt. Gongga to understand the diet-gut microbial adaptations of elevational migratory birds. Our findings indicate that elevational migratory movements can rapidly alter gut microbial composition and function within a month. There was a significant interaction between an animal-based diet and gut microbiota across migration stages, underscoring the importance of diet in shaping microbial communities. Furthermore, the gut microbial composition of T. rufilatus may be potentially altered by high-altitude acclimatization. An increase in fatty acid and amino acid metabolism was observed in response to low temperatures and limited resources, resulting in enhanced energy extraction and nutrient utilization. Moreover, microbial communities in distinct gut segments varied in relative abundance and responses to environmental changes. While the bird jejunum exhibited greater susceptibility to food and environmental fluctuations, there was no significant difference in metabolic capacity among gut segments. This study provides initial evidence of rapid diet-gut microbial changes in distinct gut segments of elevational migratory birds and highlights the importance of seasonal sample collection. Our findings provide a deeper understanding of the unique high-altitude adaptation patterns of the gut microbiota for montane elevational migratory birds.

2.
ACS Appl Mater Interfaces ; 16(20): 25909-25922, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716677

RESUMEN

Indocyanine green (ICG), as the sole near-infrared dye FDA-approved, is limited in biomedical applications because of its poor photostability, lack of targeting, and rapid removal in vivo. Herein, we presented a nanoformulation of poly-l-lysine-indocyanine green-hyaluronic acid (PIH) and demonstrated that it can image orthodox endometriosis (EM) lesions with a negative contrast. The PIH nanocluster, with an average diameter of approximately 200 nm, exhibited improved fluorescence photostability and antioxidant ability compared to free ICG. In the in vivo imaging, EM lesions were visualized, featuring apparent voids and clear boundaries. After colocalizing with the green fluorescent protein, we concluded that the contrast provided by PIH peaked at 4 h postinjection and was observable for at least 8 h. The negative contrast, clear boundaries, and enhanced observable time might be due to the low permeation of PIH to lesions and the enhanced retention on the surfaces of lesions. Thus, our findings suggest an ICG-based nanoprobe with the potential to diagnose abdominal diseases.


Asunto(s)
Endometriosis , Ácido Hialurónico , Verde de Indocianina , Verde de Indocianina/química , Endometriosis/diagnóstico por imagen , Femenino , Animales , Ácido Hialurónico/química , Humanos , Ratones , Polilisina/química , Medios de Contraste/química , Nanopartículas/química , Imagen Óptica , Colorantes Fluorescentes/química
3.
Front Microbiol ; 15: 1355859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716172

RESUMEN

Increasing nitrogen (N) input to coastal ecosystems poses a serious environmental threat. It is important to understand the responses and feedback of N removal microbial communities, particularly nitrifiers including the newly recognized complete ammonia-oxidizers (comammox), to improve aquaculture sustainability. In this study, we conducted a holistic evaluation of the functional communities responsible for nitrification by quantifying and sequencing the key functional genes of comammox Nitrospira-amoA, AOA-amoA, AOB-amoA and Nitrospira-nxrB in fish ponds with different fish feeding levels and evaluated the contribution of nitrifiers in the nitrification process through experiments of mixing pure cultures. We found that higher fish feeding dramatically increased N-related concentration, affecting the nitrifying communities. Compared to AOA and AOB, comammox Nitrospira and NOB were more sensitive to environmental changes. Unexpectedly, we detected an equivalent abundance of comammox Nitrospira and AOB and observed an increase in the proportion of clade A in comammox Nitrospira with the increase in fish feeding. Furthermore, a simplified network and shift of keystone species from NOB to comammox Nitrospira were observed in higher fish-feeding ponds. Random forest analysis suggested that the comammox Nitrospira community played a critical role in the nitrification of eutrophic aquaculture ponds (40-70 µM). Through the additional experiment of mixing nitrifying pure cultures, we found that comammox Nitrospira is the primary contributor to the nitrification process at 200 µM ammonium. These results advance our understanding of nitrifying communities and highlight the importance of comammox Nitrospira in driving nitrification in eutrophic aquaculture systems.

4.
Nat Commun ; 15(1): 950, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296939

RESUMEN

The CRISPR-Cas9 system offers substantial potential for cancer therapy by enabling precise manipulation of key genes involved in tumorigenesis and immune response. Despite its promise, the system faces critical challenges, including the preservation of cell viability post-editing and ensuring safe in vivo delivery. To address these issues, this study develops an in vivo CRISPR-Cas9 system targeting tumor-associated macrophages (TAMs). We employ bacterial protoplast-derived nanovesicles (NVs) modified with pH-responsive PEG-conjugated phospholipid derivatives and galactosamine-conjugated phospholipid derivatives tailored for TAM targeting. Utilizing plasmid-transformed E. coli protoplasts as production platforms, we successfully load NVs with two key components: a Cas9-sgRNA ribonucleoprotein targeting Pik3cg, a pivotal molecular switch of macrophage polarization, and bacterial CpG-rich DNA fragments, acting as potent TLR9 ligands. This NV-based, self-assembly approach shows promise for scalable clinical production. Our strategy remodels the tumor microenvironment by stabilizing an M1-like phenotype in TAMs, thus inhibiting tumor growth in female mice. This in vivo CRISPR-Cas9 technology opens avenues for cancer immunotherapy, overcoming challenges related to cell viability and safe, precise in vivo delivery.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Femenino , Ratones , Animales , Sistemas CRISPR-Cas/genética , Protoplastos , ARN Guía de Sistemas CRISPR-Cas , Macrófagos Asociados a Tumores , Escherichia coli/genética , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia , Fosfolípidos , Microambiente Tumoral
5.
Angew Chem Int Ed Engl ; 63(10): e202318803, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38205884

RESUMEN

Transition metal-catalyzed enantioselective C-H carbonylation with carbon monoxide, an essential and easily available C1 feedstock, remains challenging. Here, we disclosed an unprecedented enantioselective C-H carbonylation catalyzed by inexpensive and readily available cobalt(II) salt. The reactions proceed efficiently through desymmetrization, kinetic resolution, and parallel kinetic resolution, affording a broad range of chiral isoindolinones in good yields with excellent enantioselectivities (up to 92 % yield and 99 % ee). The synthetic potential of this method was demonstrated by asymmetric synthesis of biological active compounds, such as (S)-PD172938 and (S)-Pazinaclone. The resulting chiral isoindolinones also serve as chiral ligands in cobalt-catalyzed enantioselective C-H annulation with alkynes to construct phosphorus stereocenter.

6.
J Am Chem Soc ; 145(45): 24499-24505, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104268

RESUMEN

The transition metal-catalyzed enantioselective C-H functionalization strategy has revolutionized the logic of natural product synthesis. However, previous applications have heavily relied on the use of noble metal catalysts such as rhodium and palladium. Herein, we report the efficient synthesis of C1-chiral 1,2-dihydroisoquinolines (DHIQs) via enantioselective C-H/N-H annulation of picolinamides with alkynes catalyzed by a more sustainable and cheaper 3d metal catalyst, cobalt(II) acetate tetrahydrate. A wide range of enantiomerically enriched DHIQs were obtained in good yields with excellent enantioselectivities (up to 98% yield and >99% ee). The robustness and synthetic potential of this method were demonstrated by the modular and asymmetric syntheses of several tetrahydroisoquinoline alkaloids, including (S)-norlaudanosine, (S)-laudanosine, (S)-xylopinine, (S)-sebiferine, and (S)-cryptostyline II, and the asymmetric syntheses of key intermediates of (+)-solifenacin, FR115427, and (+)-NPS R-568.

7.
Integr Zool ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151756

RESUMEN

The kiang (Equus kiang) can only be observed in the Qinghai-Tibet Plateau (QTP). The kiang displayed excellent athletic performance in the high-altitude environment, which attracted wide interest in the investigation of the potential adaptive mechanisms to the extreme environment. Here, we assembled a chromosome-level genome of the kiang based on Hi-C sequencing technology. A total of 324.14 Gb clean data were generated, and the chromosome-level genome with 26 chromosomes (25 + X) and scaffold N50 of 101.77 Mb was obtained for the kiang. The genomic synteny analysis revealed large-scale chromosomal rearrangement during the evolution process of Equus species. Phylogenetic and divergence analyses revealed that the kiang was the sister branch to the ass and diverged from a common ancestor at approximately 13.5 Mya. The expanded gene families were mainly related to the hypoxia response, metabolism, and immunity. The kiang suffered a significant loss of olfaction-related genes, which might indicate decreased olfactory sensibility. Positively selected genes (PSGs) detected in the kiang were mainly associated with hypoxia response. Especially, there were two species-specific missense amino acid mutations in the PSG STAT3 annotated in the hypoxia-inducible factor 1 signal pathway, which may play an important role in the high-altitude adaptation of the kiang. Moreover, structure variations in the kiang genome were also identified, which possibly contributed to the high-altitude adaptation of the kiang. Comparative analysis revealed a lot of species-specific insertions and deletions in the kiang genome, such as PIK3CB and AKT with 3258 and 189 bp insertions in the intron region, respectively, possibly affecting the expression and regulation of hypoxia-related downstream pathways. This study provided valuable genomic resources, and our findings help a better understanding of the underlying adaptive strategies to the high-altitude environment in the kiang.

8.
Environ Res ; 239(Pt 1): 117310, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37805181

RESUMEN

Deciphering the vertical connectivity of oceanic microbiome and metabolome is crucial for understanding the carbon sequestration and achieving the carbon neutrality. However, we lack a systematic view of the interplay among particle transport, microbial community, and metabolic trait across depths. Through integrating the biogeochemical, microbial, and metabolic characteristics of a deep cold-seep water column (∼1989 m), we find the altered connectivity of microbial community and dissolved organic matter (DOM) across depths. Both the microbial communities (bacteria and protists) and DOM show a clear compositional connectivity from surface to the depth of 1000 m, highlighting the controls of sinking particle over microbial connectivity from the epipelagic to mesopelagic zone. However, due to the biological migration and ocean mixing, the fecal-associated bacteria and protistan consumers unexpectedly emerge and the degradation index of DOM substantially alters around 1000-1200 m. Collectively, we unveil the significance of multi-faceted particle dispersion, which supports the connectivity and variability of deep ocean microbial communities.


Asunto(s)
Metaboloma , Microbiota , Carbono , Secuestro de Carbono , Materia Orgánica Disuelta , Agua
9.
Chem Commun (Camb) ; 59(90): 13518-13521, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37886838

RESUMEN

Herein, we reported the synthesis of enantioenriched N-aryl peptoid atropisomers via Pd(II)-catalyzed atroposelective C-H olefination using the easily accessible L-pyroglutamic acid (L-pGlu-OH) as the chiral ligand. A series of optically active N-aryl peptoid atropisomers were obtained in synthetically useful yields with high enantioselectivities.

10.
Angew Chem Int Ed Engl ; 62(40): e202310004, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37585308

RESUMEN

Highly efficient synthesis of axially chiral biaryl amines through cobalt-catalyzed atroposelective C-H arylation using easily accessible cobalt(II) salt and salicyloxazoline ligand has been reported. This methodology provides a straightforward and sustainable access to a broad range of enantioenriched biaryl-2-amines in good yields (up to 99 %) with excellent enantioselectivities (up to 99 % ee). The synthetic utility of the unprecedented method is highlighted by its scalability and diverse transformations.

11.
Mar Pollut Bull ; 194(Pt A): 115402, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37611336

RESUMEN

Microplastics can be colonized by microorganisms and form plastisphere. However, knowledge of bacterial community succession and the enrichment of antibiotic resistance genes (ARGs) and pathogens on microplastics in aquaculture environments is limited. Here, we conducted a 30-day continuous exposure experiment at an oyster farm. Results showed that the alpha-diversity of communities on most microplastics continuously increased and was higher than in planktonic communities after 14 days. Microplastics could selectively enrich certain bacteria from water which can live a sessile lifestyle and promote colonization by other bacteria. The composition and function of plastisphere communities were distinct from those in the surrounding water and influenced by polymer type and exposure time. Microplastics can enrich ARGs (sul1, qnrS and blaTEM) and harbor potential pathogens (e.g., Pseudomonas aeruginosa). Therefore, microplastic pollution may pose a critical threat to aquaculture ecosystems and human health. Our study provides further insight into the ecological risks of microplastics.


Asunto(s)
Ecosistema , Ostreidae , Humanos , Animales , Microplásticos , Plásticos , Antibacterianos , Acuicultura , Bacterias/genética , Farmacorresistencia Microbiana , Agua
12.
J Hazard Mater ; 458: 131974, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406521

RESUMEN

Early evidence has elucidated that the spread of antibiotic (ARGs) and metal resistance genes (MRGs) are mainly attributed to the selection pressure in human-influenced environments. However, whether and how biotic and abiotic factors mediate the distribution of ARGs and MRGs in mangrove sediments under natural sedimentation is largely unclear. Here, we profiled the abundance and diversity of ARGs and MRGs and their relationships with sedimental microbiomes in 0-100 cm mangrove sediments. Our results identified multidrug-resistance and multimetal-resistance as the most abundant ARG and MRG classes, and their abundances generally decreased with the sediment depth. Instead of abiotic factors such as nutrients and antibiotics, the bacterial diversity was significantly negatively correlated with the abundance and diversity of resistomes. Also, the majority of resistance classes (e.g., multidrug and arsenic) were carried by more diverse bacterial hosts in deep layers with low abundances of resistance genes. Together, our results indicated that bacterial diversity was the most important biotic factor driving the vertical profile of ARGs and MRGs in the mangrove sediment. Given that there is a foreseeable increasing human impact on natural environments, this study emphasizes the important role of biodiversity in driving the abundance and diversity of ARGs and MRGs.


Asunto(s)
Genes Bacterianos , Microbiota , Humanos , Bacterias/genética , Antibacterianos
13.
Angew Chem Int Ed Engl ; 62(28): e202304706, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37183909

RESUMEN

Chiral diarylmethylamines (DAMA) are important structural motifs widely present in pharmaceuticals, natural products, and chiral ligands. Herein, we reported a highly enantioselective synthesis of chiral DAMAs via cobalt-catalyzed enantioselective C-H alkoxylation strategy. The reaction features easy operation, the use of earth-abundant and cost-efficient cobalt(II) catalyst, and readily available ligand. A range of chiral DAMAs were efficiently synthesized in high yields with excellent enantioselectivities (up to 90 % yield and up to 99 % ee) through desymmetrization and parallel kinetic resolution. Moreover, this protocol was also compatible with the synthesis of chiral benzylamines via kinetic resolution.

14.
Animals (Basel) ; 13(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36830442

RESUMEN

Microsatellites (SSRs) are widely distributed in the genomes of organisms and are an important genetic basis for genome evolution and phenotypic adaptation. Although the distribution patterns of microsatellites have been investigated in many phylogenetic lineages, they remain unclear within the morphologically and physiologically diverse avian clades. Here, based on high-quality chromosome-level genomes, we examined the microsatellite distribution patterns for 53 birds from 16 orders. The results demonstrated that each type of SSR had the same ratio between taxa. For example, the frequency of imperfect SSRs (I-SSRs) was 69.90-84.61%, while perfect SSRs (P-SSRs) were 14.86-28.13% and compound SSRs (C-SSRs) were 0.39-2.24%. Mononucleotide SSRs were dominant for perfect SSRs (32.66-76.48%) in most bird species (98.11%), and A(n) was the most abundant repeat motifs of P-SSRs in all birds (5.42-68.22%). Our study further confirmed that the abundance and diversity of microsatellites were less effected by evolutionary history but its length. The number of P-SSRs decreased with increasing repeat times, and longer P-SSRs motifs had a higher variability coefficient of the repeat copy number and lower diversity, indicating that longer motifs tended to have more stable preferences in avian genomes. We also found that P-SSRs were mainly distributed at the gene ends, and the functional annotation for these genes demonstrated that they were related to signal transduction and cellular process. In conclusion, our research provided avian SSR distribution patterns, which will help to explore the genetic basis for phenotypic diversity in birds.

15.
Angew Chem Int Ed Engl ; 62(13): e202217234, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36745050

RESUMEN

Inspired by biological helices (e.g., DNA), artificial helical polymers have attracted intense attention. However, precise synthesis of one-handed helices from achiral materials remains a formidable challenge. Herein, a series of achiral poly(biphenyl allene)s with controlled molar mass and low dispersity were prepared and induced into one-handed helices using chiral amines and alcohols. The induced one-handed helix was simultaneously memorized, even after the chiral inducer was removed. The switchable induction processes were visible to naked eye; the achiral polymers exhibited blue emission (irradiated at 365 nm), whereas the induced one-handed helices exhibited cyan emission with clear circularly polarized luminescence. The induced helices formed stable gels in various solvents with helicity discrimination ability: the same-handed helix gels were self-healing, whereas the gels of opposite-handed helicity were self-sorted. Moreover, the induced helices could separate enantiomers via enantioselective crystallization with high efficiency and switchable enantioselectivity.

16.
Materials (Basel) ; 16(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770252

RESUMEN

The goal of this research was to determine how the master alloys Al-5Ti-0.25C-0.25B and Al-5Ti-1B affected the mechanical properties and structural characteristics of the alloy Al-9.5Si-1.5Cu-0.8Mn-0.6Mg. Field emission scanning electron microscopy (FE-SEM) was used to probe the microscopic composition, and the mechanical properties were evaluated using tensile testing. The results showed that, by adding 0.5% Al-5Ti-0.25C-0.25B master alloy and 0.5% Al-5Ti-1B master alloy, the α-Al dendrites can be significantly refined. In the extrusion state, the ultimate tensile strength and elongation with 0.5% Al-5Ti-0.25C-0.25B master alloy reached 380 MPa and 11.2%, which were 5.5% and 22.4% higher than no refinement, respectively. The elongation of the samples with the Al-5Ti-1B alloy addition increased from 9% to 11.9%, which is attributed to the fact that more pronounced complete recrystallization occurred during the extrusion heat treatment.

17.
Animals (Basel) ; 13(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36766250

RESUMEN

Sperm whales are a marine mammal famous for the aromatic substance, the ambergris, produced from its colon. Little is known about the biological processes of ambergris production, and this study aims to investigate the genetic mechanism of ambergris production in the sperm whale based on its chromosome-level genome. Comparative genomics analyses found 1207 expanded gene families and 321 positive selected genes (PSGs) in the sperm whale, and functional enrichment analyses suggested revelatory pathways and terms related to the metabolism of steroids, terpenoids, and aldosterone, as well as microbiota interaction and immune network in the intestine. Furthermore, two sperm-whale-specific missense mutations (Tyr393His and Leu567Val) were detected in the PSG LIPE, which has been reported to play vital roles in lipid and cholesterol metabolism. In total, 46 CYP genes and 22 HSD genes were annotated, and then mapped to sperm whale chromosomes. Furthermore, phylogenetic analysis of CYP genes in six mammals found that CYP2E1, CYP51A and CYP8 subfamilies exhibited relative expansion in the sperm whale. Our results could help understand the genetic mechanism of ambergris production, and further reveal the convergent evolution pattern among animals that produce similar odorants.

18.
Plant Physiol ; 191(3): 1734-1750, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36617219

RESUMEN

In pear (Pyrus bretschneideri), pollen tube growth is critical for the double fertilization associated with seed setting, which in turn affects fruit yield. The normal deposition of callose mediates the polar growth of pollen tubes. However, the mechanism regulating callose synthesis in pollen tubes remains relatively uncharacterized. In this study, we revealed that the typical pear pollen tube lifecycle has a semi-growth duration (GD50) of 16.16 h under in vitro culture conditions. Moreover, callose plugs were deposited throughout the pollen tube lifecycle. The formation of callose plugs was inhibited by 2-deoxy-D-glucose, which also accelerated the senescence of pear pollen tubes. Additionally, PbrCalS1B.1, which encodes a plasma membrane-localized callose synthase, was expressed specifically in pollen tubes and restored the fertility of the Arabidopsis (Arabidopsis thaliana) cals5 mutant, in which callose synthesis is inhibited. However, this restoration of fertility was impaired by the transient silencing of PbrCalS1B.1, which restricts callose plug formation and shortens the pear pollen tube lifecycle. More specifically, PbrbZIP52 regulated PbrCalS1B.1 transcription by binding to promoter A-box elements to maintain the periodic formation of callose plugs and normal pollen tube growth, ultimately leading to double fertilization. This study confirmed that PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. This finding may be useful for breeding high-yielding pear cultivars and stabilizing fruit setting in commercial orchards.


Asunto(s)
Arabidopsis , Pyrus , Tubo Polínico , Pyrus/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Longevidad , Fitomejoramiento , Arabidopsis/metabolismo
19.
J Hered ; 114(2): 175-188, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36546409

RESUMEN

The Tibetan partridge (Perdix hodgsoniae) is a widely distributed endemic species in high-altitude areas across the Tibetan Plateau where the hypoxia, lower temperature and high ultraviolet radiation are pivotal factors influencing survival. However, the underlying genetic adaptation of the Tibetan partridge to extreme environments remains uncertain due to limited genomic resources. Similarly, the phylogenetic position of Perdix within Phasianidae remains controversial due to lacking information. Consequently, we de novo assembled and annotated the whole genome of the Tibetan partridge. The genome size was 1.15 Gb with contig N50 of 3.70 Mb. A total of 202.30 Mb (17.61%) repetitive elements and 445,876 perfect microsatellites were identified. A total of 16,845 functionally annotated protein-coding genes were identified in the Tibetan partridge. Genomic phylogenetic analysis across 30 Galliformes species indicated a close relationship between Perdix and typical pheasants composed of Chrysolophus, Symaticus, Phasianus, Crossopilon, and Lophura. However, the phylogenetic relationship of (Perdix + (Chrysolophus + (Syrmaticus + other pheasants))) was different from those of (Perdix + (Syrmaticus + (Chrysolophus + other pheasants))) in previous studies. Comparative genomic results identified NFKB1 and CREBBP positively selected genes related to hypoxia with 3 and 2 Tibetan partridge-specific missense mutations, respectively. Expanded gene families were mainly associated with energy metabolism and steroid hydroxylase activity, meanwhile, contracted gene families were mainly related to immunity and olfactory perception. Our genomic data considerably contribute to the phylogeny of Perdix and the underlying adaptation strategies of the Tibetan partridge to a high-altitude environment.


Asunto(s)
Altitud , Galliformes , Animales , Filogenia , Tibet , Rayos Ultravioleta , Galliformes/genética , Adaptación Fisiológica/genética , Hipoxia
20.
Chem Biol Interact ; 370: 110305, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36529159

RESUMEN

Ribavirin is a common antiviral drug, especially for patients with hepatitis C. Our recent studies demonstrated that ribavirin showed anti-tumor activity in colorectal cancer and hepatocellular carcinoma, but its effects on lung cancer remains unclear. This study aimed to evaluate the anti-tumor activity of ribavirin against lung cancer and elucidate the underlying mechanism. We established orthotopic mouse model of lung cancer (LLC and GLC-82) and employed an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomics approach. We found that ribavirin significantly inhibited the proliferation and colony formation of lung cancer cells. Tumor sizes of orthotopic lung cancer in ribavirin-treated groups were also significantly lower than those in control groups. Metabolomics analysis revealed that ribavirin mainly affected 5 metabolic pathways in orthotopic lung tumor models, taurine and hypotaurine metabolism, nicotinate and nicotinamide metabolism, linoleic acid metabolism, arginine biosynthesis and arachidonic acid metabolism. Furthermore, we identified 5 upregulated metabolites including ß-nicotinamide adenine dinucleotide (NAD+), nicotinamide (NAM), taurine, ornithine and citrulline, and 7 downregulated metabolites including 1-methylnicotinamide (MNAM), S-adenosyl-l-homocysteine (SAH), N1-Methyl-2-pyridone-5-carboxamide (2PY), homocysteine (Hcy), linoleic acid, arachidonic acid (AA) and argininosuccinic acid in ribavirin-treated groups. These results provide new insight into the anti-tumor mechanism of ribavirin for lung cancer.


Asunto(s)
Neoplasias Pulmonares , Ribavirina , Ratones , Animales , Ribavirina/farmacología , Ribavirina/uso terapéutico , Ácido Araquidónico , Ácido Linoleico , Metabolómica/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Cromatografía Líquida de Alta Presión/métodos , Niacinamida , Taurina , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...