Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 225
2.
Mol Biol Rep ; 51(1): 581, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668759

BACKGROUND: Homeodomain-leucine ZIPper (HD-ZIP) transcription factors play crucial roles in plant growth, development, and stress responses. The HD-ZIP family is categorised into four groups (HD-ZIP I-IV). While extensive genome-wide studies have been conducted on the HD-ZIP I, III, and IV subfamily in Nicotiana tabacum (tobacco), comprehensive reports on the HD-ZIP II subfamily genes are limited. METHODS: Bioinformatics resources and tools were utilised to analyse molecular characteristics, phylogenetic homology, and protein interactions. Expression pattern analyses in various tissues and the relative expression of NtHD-ZIP II genes under drought and GA3 treatment were assessed by qRT-PCR. RESULTS: In this study, 24 HD-ZIP II members were systematically identified and categorised into seven independent clades through phylogenetic analysis involving tobacco and other plant species. We found that 19 NtHD-ZIP II genes exhibited tissue-specific expression. The transcripts of NtHD-ZIPII3, 4, 14, 23, 24 were notably induced under the drought treatments, while those of NtHD-ZIPII7, 11, 12, 20 were suppressed. Furthermore, NtHD-ZIPII15 transcripts decreased following GA3 treatment, whereas the transcripts of NtHD-ZIPII7, 8, 11, 12 were induced after GA3 treatment. Notably, an increase in trichomes was observed in tobacco leaves treated with GA3 and subjected to drought. CONCLUSIONS: The expression levels of some HD-ZIP II genes were altered, and an increase in glandular trichomes was induced under GA3 and drought treatments in tobacco. Overall, our findings provide insights into the expression patterns of NtHD-ZIP II genes and will facilitate their functional characterisation in future studies.


Droughts , Gene Expression Regulation, Plant , Homeodomain Proteins , Nicotiana , Phylogeny , Plant Proteins , Stress, Physiological , Nicotiana/genetics , Nicotiana/metabolism , Gene Expression Regulation, Plant/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Multigene Family , Gibberellins/metabolism , Leucine Zippers/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Genome, Plant , Gene Expression Profiling/methods
3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1587-1593, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621943

This study aims to explore the effect of Zuogui Jiangtang Qinggan Formula(ZGJTQGF) on the lipid metabolism in the db/db mouse model of type 2 diabetes mellitus(T2DM) complicated with non-alcoholic fatty liver disease(NAFLD) via the insulin receptor(INSR)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)/sterol-regulatory element-binding protein 2(SREBP-2) signaling pathway. Twenty-four db/db mice were randomized into positive drug(metformin, 0.067 g·kg~(-1)) and low-(7.5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) ZGJTQGF groups. Six C57 mice were used as the blank group and administrated with an equal volume of distilled water. The mice in other groups except the blank group were administrated with corresponding drugs by gavage for 6 consecutive weeks. At the end of drug administration, fasting blood glucose(FBG) and blood lipid levels were measured, and oral glucose tolerance test was performed. Compared with the blank group, the mice treated with ZGJTQGF showed decreased body mass and liver weight coefficient, lowered levels of FBG, total cholesterol(TC), triglyceride(TG), and low-density lipoprotein(LDL), and weakened liver function. The pathological changes and lipid accumulation in the liver tissue were examined. Western blot was employed to measure the protein levels of INSR, AMPK, p-AMPK, and SREBP-2. Compared with the blank group, the model group showed down-regulated protein levels of INSR and p-AMPK/AMPK and up-regulated protein level of SREBP-2. Compared with the model group, high-dose ZGJTQGF up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2. Low-dose ZGJTQGF slightly up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2, without significant differences. The results suggested that ZGJTQGF may alleviate insulin resistance and improve lipid metabolism in db/db mice by activating the INSR/AMPK/SREBP-2 signaling pathway.


Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Lipid Metabolism , AMP-Activated Protein Kinases/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Liver , Lipids
4.
J Ethnopharmacol ; 329: 118160, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38588985

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatic steatosis, a hallmark of non-alcoholic fatty liver disease (NAFLD), represents a significant global health issue. Liver lipidomics has garnered increased focus recently, highlighting Traditional Chinese Medicine's (TCM) role in mitigating such conditions through lipid metabolism regulation. The Zuogui Jiangtang Qinggan Formula (ZGJTQGF), a longstanding TCM regimen for treating Type 2 Diabetes Mellitus (T2DM) with NAFLD, lacks a definitive mechanism for its lipid metabolism regulatory effects. AIM OF THE STUDY: This research aims to elucidate ZGJTQGF's mechanism on lipid metabolism in T2DM with NAFLD. MATERIALS AND METHODS: The study, utilized db/db mice to establish T2DM with NAFLD models. Evaluations included Hematoxylin-Eosin (HE) and Oil Red O stainedstaining of liver tissues, alongside biochemical lipid parameter analysis. Liver lipidomics and Western blotting further substantiated the findings, systematically uncovering the mechanism of action mechanism. RESULTS: ZGJTQGF notably reduced body weight, and Fasting Blood Glucose (FBG), enhancing glucose tolerance in db/db mice. HE, and Oil Red O staining, complemented by biochemical and liver lipidomics analyses, confirmed ZGJTQGF's efficacy in ameliorating liver steatosis and lipid metabolism anomalies. Lipidomics identified 1571 significantly altered lipid species in the model group, primarily through the upregulation of triglycerides (TG) and diglycerides (DG), and the downregulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Post-ZGJTQGF treatment, 496 lipid species were modulated, with increased PC and PE levels and decreased TG and DG, showcasing significant lipid metabolism improvement in T2DM with NAFLD. Moreover, ZGJTQGF's influence on lipid synthesis-related proteins was observed, underscoring its anti-steatotic impact through liver lipidomic alterations and offering novel insights into hepatic steatosis pathogenesis. CONCLUSIONS: Liver lipidomics analysis combined with protein verification further demonstrated that ZGJTQGF could ameliorate the lipid disturbance of TG, DG, PC, PE in T2DM with NAFLD, as well as improve fatty acid and cholesterol synthesis and metabolism through De novo lipogenesis pathway.

5.
ACS Sens ; 9(4): 1877-1885, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38573977

The precise determination of DNA methylation at specific sites is critical for the timely detection of cancer, as DNA methylation is closely associated with the initiation and progression of cancer. Herein, a novel ratiometric fluorescence method based on the methylation-sensitive restriction enzyme (MSRE), CRISPR/Cas12a, and catalytic hairpin assembly (CHA) amplification were developed to detect site-specific methylation with high sensitivity and specificity. In detail, AciI, one of the commonly used MSREs, was employed to distinguish the methylated target from nonmethylated targets. The CRISPR/Cas12a system was utilized to recognize the site-specific target. In this process, the protospacer adjacent motif and crRNA-dependent identification, the single-base resolution of Cas12a, can effectively ensure detection specificity. The trans-cleavage ability of Cas12a can convert one target into abundant activators and can then trigger the CHA reaction, leading to the accomplishment of cascaded signal amplification. Moreover, with the structural change of the hairpin probe during CHA, two labeled dyes can be spatially separated, generating a change of the Förster resonance energy transfer signal. In general, the proposed strategy of tandem CHA after the CRISPR/Cas12a reaction not only avoids the generation of false-positive signals caused by the target-similar nucleic acid but can also improve the sensitivity. The use of ratiometric fluorescence can eradicate environmental effects by self-calibration. Consequently, the proposed approach had a detection limit of 2.02 fM. This approach could distinguish between colorectal cancer and precancerous tissue, as well as between colorectal patients and healthy people. Therefore, the developed method can serve as an excellent site-specific methylation detection tool, which is promising for biological and disease studies.


CRISPR-Cas Systems , DNA Methylation , CRISPR-Cas Systems/genetics , Humans , DNA Restriction Enzymes/metabolism , DNA Restriction Enzymes/chemistry , Fluorescence Resonance Energy Transfer/methods , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , Biosensing Techniques/methods
6.
Talanta ; 273: 125872, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38471421

Gene methylation-related enzymes (GMREs) are disfunction and aberrantly expressed in a variety of cancers, such as lung, gastric, and pancreatic cancers and have important implications for human health. Therefore,it is critical for early diagnosis and therapy of tumor to develop strategies that allow rapid and sensitive quantitative and qualitative detection of GMREs. With the development of modern analytical techniques and the application of various biosensors, there are numerous methods have been developed for analysis of GMREs. Therefore, this paper provides a systematic review of the strategies for level and activity assay of various GMREs including methyltransferases and demethylase. The detection methods mainly involve immunohistochemistry, colorimetry, fluorescence, chemiluminescence, electrochemistry, etc. Then, this review also addresses the coordinated role of various detection probes, novel nanomaterials, and signal amplification methods. The aim is to highlight potential challenges in the present field, to expand the analytical application of GMREs detection strategies, and to meet the urgent need for future disease diagnosis and intervention.


Biosensing Techniques , Neoplasms , Humans , DNA Methylation , RNA Methylation , DNA/genetics , Biosensing Techniques/methods , Neoplasms/genetics
7.
Talanta ; 273: 125878, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38492286

Long non-coding RNA (LncRNA) as an emerging tumor biomarker plays a key factor in the early diagnosis of cancer. Herein, an innovative signal-switchable photoelectrochemical (PEC) biosensor based on ZrO2@CuO bimetallic oxides and T7 Exo-assisted signal amplification is reported for the ultrasensitive and selective detection of lncRNA (HOX gene antisense intergenic RNA, HOTAIR) in cancer cells. Firstly, MOFs-derived TiO2 nanodisks as an excellent photoactive material show an anodic background signal. When target lncRNA exists, the abundant auxiliary DNA1 is freed from T7 Exo-assisted cycle signal amplification, and then competitively hybridizes with auxiliary DNA2 on the electrode. Subsequently, bimetallic MOFs-derived ZrO2@CuO octahedra with a high specific surface area and porous structure are introduced into TiO2 nanodisks-modified biosensor, which appears a cathodic photocurrent and achieves a switchable signal. The developed signal-switchable PEC biosensor shows ultrasensitive detection of lncRNA HOTAIR with a detection limit of 0.12 fM, and can eliminate the false interference. Importantly, the established PEC biosensor has good correlation with RT-qPCR analysis (P < 0.05) for the quantification of lncRNA HOTAIR in cancer cells, which has great potential application for biomarker detection in the early diagnosis of cancer.


Biosensing Techniques , Neoplasms , RNA, Long Noncoding , Electrochemical Techniques , RNA, Long Noncoding/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Limit of Detection , Neoplasms/diagnosis , Neoplasms/genetics
8.
Front Plant Sci ; 15: 1334430, 2024.
Article En | MEDLINE | ID: mdl-38384767

This study aimed to enhance the use of male sterility in pepper to select superior hybrid generations. Transcriptomic and proteomic analyses of fertile line 1933A and nucleic male sterility line 1933B of Capsicum annuum L. were performed to identify male sterility-related proteins and genes. The phylogenetic tree, physical and chemical characteristics, gene structure characteristics, collinearity and expression characteristics of candidate genes were analyzed. The study identified 2,357 differentially expressed genes, of which 1,145 and 229 were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, respectively. A total of 7,628 quantifiable proteins were identified and 29 important proteins and genes were identified. It is worth noting that the existence of CaPRX genes has been found in both proteomics and transcriptomics, and 3 CaPRX genes have been identified through association analysis. A total of 66 CaPRX genes have been identified at the genome level, which are divided into 13 subfamilies, all containing typical CaPRX gene conformal domains. It is unevenly distributed across 12 chromosomes (including the virtual chromosome Chr00). Salt stress and co-expression analysis show that male sterility genes are expressed to varying degrees, and multiple transcription factors are co-expressed with CaPRXs, suggesting that they are involved in the induction of pepper salt stress. The study findings provide a theoretical foundation for genetic breeding by identifying genes, metabolic pathways, and molecular mechanisms involved in male sterility in pepper.

9.
Nat Commun ; 15(1): 1374, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38355699

Electric field-induced second harmonic generation allows electrically controlling nonlinear light-matter interactions crucial for emerging integrated photonics applications. Despite its wide presence in materials, the figures-of-merit of electric field-induced second harmonic generation are yet to be elevated to enable novel device functionalities. Here, we show that the polar skyrmions, a topological phase spontaneously formed in PbTiO3/SrTiO3 ferroelectric superlattices, exhibit a high comprehensive electric field-induced second harmonic generation performance. The second-order nonlinear susceptibility and modulation depth, measured under non-resonant 800 nm excitation, reach ~54.2 pm V-1 and ~664% V-1, respectively, and high response bandwidth (higher than 10 MHz), wide operating temperature range (up to ~400 K) and good fatigue resistance (>1010 cycles) are also demonstrated. Through combined in-situ experiments and phase-field simulations, we establish the microscopic links between the exotic polarization configuration and field-induced transition paths of the skyrmions and their electric field-induced second harmonic generation response. Our study not only presents a highly competitive thin-film material ready for constructing on-chip devices, but opens up new avenues of utilizing topological polar structures in the fields of photonics and optoelectronics.

10.
Talanta ; 271: 125663, 2024 May 01.
Article En | MEDLINE | ID: mdl-38232570

Nucleic acids are essential biomarkers in molecular diagnostics. The CRISPR/Cas system has been widely used for nucleic acid detection. Moreover, canonical CRISPR/Cas12a based biosensors can specifically recognize and cleave target DNA, as well as single-strand DNA serving as reporter probe, which have become a super star in recent years in the field of nucleic acid detection due to its high specificity, universal programmability and simple operation. However, canonical CRISPR/Cas12a based biosensors are hard to meet the requirements of higher sensitivity, higher specificity, higher efficiency, larger target scope, easier operation, multiplexing, low cost and diversified signal reading. Then, advanced non-canonical CRISPR/Cas12a based biosensors emerge. In this review, applications of non-canonical CRISPR/Cas12a-based biosensors in nucleic acid detection are summarized. And the principles, peculiarities, performances and perspectives of these non-canonical CRISPR/Cas12a based biosensors are also discussed.


CRISPR-Cas Systems , Nucleic Acids , DNA, Single-Stranded
11.
Anal Chim Acta ; 1288: 342163, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38220295

BACKGROUND: Sulfonamides (SAs) are a class of synthetic antibacterial agents that are diffusely used in the medical industry and animal husbandry. Their prevalence in the influents and effluents of water treatment plants, as well as in rivers and groundwater, has provoked worldwide concern. Monitoring SAs in environmental water is of great significance for public health. However, most of the available detection techniques for SAs are cumbersome and time-consuming. With the increasing number of actual samples, simple, fast and environmentally friendly analytical methods are always in demand. RESULTS: Herein, we describe a highly efficient micro-solid phase extraction (µ-SPE) sample preparation technique based on a novel thiol and ionic liquid bi-functional nanofibers membrane (IL-SH-PAN NFsM) for multi-residue detection of sulfonamides (SAs) in water samples. By the synergistic effect of -SH and -IL, the as-prepared IL-SH-PAN NFsM demonstrated high adsorption capacity and excellent selectivity for SAs. The water samples can be directly used for µ-SPE without pH and ionic strength adjustment, and the eluent can be directly collected for HPLC-MS/MS analysis. Compared with other methods reported in the literature, this method required much shorter extraction time (2 min for a batch), much less amount of adsorbent (4.0 mg) and organic solvent (0.5 mL), while providing much higher sensitivity (1.4-3.9 ng L-1), and fine recoveries (88.8%-117.7%) with relative standard deviations less than 4.26%. SIGNIFICANCE AND NOVELTY: A bi-functional nanofibers membrane was prepared for efficient extraction of SAs. The adsorbent exhibited superior adsorption performance and excellent selectivity. The underlying interaction mechanisms derived from -SH and -IL were proposed, which provide a new idea for preparing versatile adsorbents. Rapid, efficient and sensitive detection of SAs in water was achieved. The novel sample preparation technique can be expected as an efficient method for routine trace SAs residue monitoring in various water samples.

12.
Environ Monit Assess ; 196(2): 113, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38180589

To enhance the efficiency of composting agricultural organic waste (AOW), this study aimed to examine the impact of inoculating tomato straw compost with two distinct microbial agents: ZymoZone (ZZ), a composite microbial agent derived from the straw compost and Effective Microorganisms (EM), a commercial microbial agent. Furthermore, in order to reactivate the microorganisms within the compost during the initial high temperature phase, 10% brown sugar was introduced as a carbon source. The objective of this addition was to assess its influence on the composting process. The findings revealed that compared to the control (CK) group, the ZZ and EM treatments extended the first high-temperature phase by 2 and 1 day, respectively. Furthermore, with the addition of 10% brown sugar, the ZZ and EM treatments remained in the second high-temperature phase for 8 and 7 days, respectively, while the CK treatment had already entered the cooling stage by then. Notably, the inoculation of microbial agents and the addition of brown sugar substantially augmented the activity of lignocellulose-related hydrolases, thereby promoting the degradation of lignocellulose in the ZZ and EM treatment groups. This was confirmed by FTIR analysis, which demonstrated that the addition of microbial agents facilitated the degradation of specific substances, leading to reduced absorbance in the corresponding spectra. XRD analysis further indicated a notable reduction in cellulose crystallinity for both the ZZ (8.00%) and EM (7.73%) treatments. Hence, the incorporation of microbial agents and brown sugar in tomato straw compost effectively enhances the composting process and improves the quality of compost products.


Composting , Solanum lycopersicum , Environmental Monitoring , Agriculture , Carbon , Sugars
13.
Chem Commun (Camb) ; 60(11): 1436-1439, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38206119

In this paper, benzo-fused cyclic carbonates were designed and synthesized as a new type of precursor of π-allylpalladium zwitterionic intermediates, and were applied in Pd-catalyzed diastereo- and enantioselective (4+3) cycloaddition with C,N-cyclic azomethine imines, leading to various biologically important 1,3,4-benzoxadiazepine derivatives in 43-99% yields with 6 : 1 to >20 : 1 dr and up to 95% ee.

14.
Talanta ; 271: 125700, 2024 May 01.
Article En | MEDLINE | ID: mdl-38277965

Exosomes are closely associated with tumor development and are regarded as viable biomarkers for cancer. Here, a ratiometric fluorescence method was proposed for the one-step and label-free detection of plasma exosomes. A bicolor streptavidin magnetic beads were specifically created with an immobilized Cy5-labeled hairpin aptamer for CD63 (Cy5-Apt) on its surface to identify exosome, and a green color SYBR Green I (SGI) embedded in the stem of Cy5-Apt to respond to exosomes. After exosome capture, the Cy5-Apt could undergo a conformational shift and release the encapsulated SGI, allowing exosome measurement based on the fluorescence ratio of Cy5 and SGI. The enrichment, separation and detection of exosomes in proposed method could be completed in one step (30 min), which is a significant improvement over previous method. Furthermore, the use of ratiometric fluorescence and magnetic separation allows for exosome enrichment and interference elimination from complex matrices, improving accuracy and sensitivity. Particularly, the assay could detect exosomes in plasma and has potential to distinguish lung cancer patients from healthy volunteers with an area under the receiver operator characteristic curve of 0.85. Besides, the study provided an efficient method for analyzing the various divisions of exosomes by merely modifying the aptamer, which holds great promise for point-of-care applications.


Exosomes , Lung Neoplasms , Humans , Fluorescence , Carbocyanines , Lung Neoplasms/diagnosis
15.
Small ; 20(7): e2306576, 2024 Feb.
Article En | MEDLINE | ID: mdl-37803924

The widespread acceptance of nonaqueous rechargeable metal-gas batteries, known for their remarkably high theoretical energy density, faces obstacles such as poor reversibility and low energy efficiency under high charge-discharge current densities. To tackle these challenges, a novel catalytic cathode architecture for Mg-CO2 batteries, fabricated using a one-pot electrospinning method followed by heat treatment, is presented. The resulting structure features well-dispersed molybdenum carbide nanodots embedded within interconnected carbon nanofibers, forming a 3D macroporous conducting network. This cathode design enhances the volumetric efficiency, enabling effective discharge product deposition, while also improving electrical properties and boosting catalytic activity. This enhancement results in high discharge capacities and excellent rate capabilities, while simultaneously minimizing voltage hysteresis and maximizing energy efficiency. The battery exhibits a stable cycle life of over 250 h at a current density of 200 mA g-1 with a low initial charge-discharge voltage gap of 0.72 V. Even at incredibly high current densities, reaching 1600 mA g-1 , the battery maintains exceptional performance. These findings highlight the crucial role of cathode architecture design in enhancing the performance of Mg-CO2 batteries and hold promise for improving other metal-gas batteries that involve deposition-decomposition reactions.

16.
IEEE Trans Image Process ; 33: 42-57, 2024.
Article En | MEDLINE | ID: mdl-37988212

As compared to standard dynamic range (SDR) videos, high dynamic range (HDR) content is able to represent and display much wider and more accurate ranges of brightness and color, leading to more engaging and enjoyable visual experiences. HDR also implies increases in data volume, further challenging existing limits on bandwidth consumption and on the quality of delivered content. Perceptual quality models are used to monitor and control the compression of streamed SDR content. A similar strategy should be useful for HDR content, yet there has been limited work on building HDR video quality assessment (VQA) algorithms. One reason for this is a scarcity of high-quality HDR VQA databases representative of contemporary HDR standards. Towards filling this gap, we created the first publicly available HDR VQA database dedicated to HDR10 videos, called the Laboratory for Image and Video Engineering (LIVE) HDR Database. It comprises 310 videos from 31 distinct source sequences processed by ten different compression and resolution combinations, simulating bitrate ladders used by the streaming industry. We used this data to conduct a subjective quality study, gathering more than 20,000 human quality judgments under two different illumination conditions. To demonstrate the usefulness of this new psychometric data resource, we also designed a new framework for creating HDR quality sensitive features, using a nonlinear transform to emphasize distortions occurring in spatial portions of videos that are enhanced by HDR, e.g., having darker blacks and brighter whites. We apply this new method, which we call HDRMAX, to modify the widely-deployed Video Multimethod Assessment Fusion (VMAF) model. We show that VMAF+HDRMAX provides significantly elevated performance on both HDR and SDR videos, exceeding prior state-of-the-art model performance. The database is now accessible at: https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html. The model will be made available at a later date at: https://live.ece.utexas.edu//research/Quality/index_algorithms.htm.

17.
Ecotoxicol Environ Saf ; 270: 115884, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38154152

Appropriate management of agricultural organic waste (AOW) presents a significant obstacle in the endeavor to attain sustainable agricultural development. The proper management of AOW is a necessity for sustainable agricultural development. This can be done skillfully by incorporating microbial agents in the composting procedure. In this study, we isolated relevant bacteria strains from tomato straw AOW, which demonstrated efficient degradation of lignocellulose without any antagonistic effects in them. These strains were then combined to create a composite microbial agent called Zyco Shield (ZS). The performance of ZS was compared with a commercially effective microorganism (EM) and a control CK. The results indicate that the ZS treatment significantly prolonged the elevated temperature phase of the tomato straw pile, showing considerable degradation of lignocellulosic material. This substantial degradation did not happen in the EM and CK treatments. Moreover, there was a temperature rise of 4-6 â„ƒ in 2 days of thermophilic phase, which was not the case in the EM and CK treatments. Furthermore, the inoculation of ZS substantially enhanced the degradation of organic waste derived from tomato straw. This method increased the nutrient content of the resulting compost and elevated the enzymatic activity of lignocellulose-degrading enzymes, while reducing the urease enzyme activity within the pile. The concentrations of NH4+-N and NO3--N showed increases of (2.13% and 47.51%), (14.81% and 32.17%) respectively, which is again very different from the results of the EM and CK treatments. To some extent, the alterations observed in the microbial community and the abundance of functional microorganisms provide indirect evidence supporting the fact that the addition of ZS microbial agent facilitates the composting process of tomato straw. Moreover, we confirmed the degradation process of tomato straw through X-ray diffraction, Fourier infrared spectroscopy, and by scanning electron microscopy to analyze the role of ZS microbial inoculum composting. Consequently, reinoculation compost strains improves agricultural waste composting efficiency and enhances product quality.


Composting , Microbiota , Solanum lycopersicum , Agriculture , Bacteria/metabolism , Soil/chemistry , Nitrogen/analysis
18.
ACS Appl Mater Interfaces ; 16(1): 1492-1501, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38153799

Piezoelectric poly(vinylidene fluoride) (PVDF) and its copolymers have been widely investigated for applications in wearable electric devices and sensing systems, owing to their intrinsic piezoelectricity and superior flexibility. However, their weak piezoelectricity poses major challenges for practical applications. To overcome these challenges, we propose a two-step synthesis approach to fabricate sandwich-structured piezoelectric films (BaTiO3@PDA/PVDF/BaTiO3@PDA) with significantly enhanced ferroelectric and piezoelectric properties. As compared to pristine PVDF films or conventional 0-3 composite films, a maximum polarization (Pmax) of 11.24 µC/cm2, a remanent polarization (Pr) of 5.83 µC/cm2, and an enhanced piezoelectric coefficient (d33 ∼ 14.6 pC/N) were achieved. Simulation and experimental results have demonstrated that the sandwich structure enhances the ability of composite films to withstand higher poling electric fields in comparison with 0-3 composites. The sandwich-structured piezoelectric films are further integrated into a wireless sensor system with a high force sensitivity of 288 mV/N, demonstrating great potential for movement monitoring applications. This facile approach shows great promise for the large-scale production of composite films with remarkable flexibility, ferroelectricity, and piezoelectricity for wearable sensing devices.

19.
Math Biosci Eng ; 20(10): 18230-18247, 2023 Sep 21.
Article En | MEDLINE | ID: mdl-38052556

We present the dynamical equation model of the axially moving system, which is expressed through one partial differential equation (PDE) and two ordinary differential equations (ODEs) obtained using the extended Hamilton's principle. In the case of large acceleration/deceleration axially moving system with system parameters uncertainty and input saturation limitation, the combination of Lyapunov theory, S-curve acceleration and deceleration (Sc A/D) and adaptive control techniques adopts auxiliary systems to overcome the saturation limitations of the actuator, thus achieving the purpose of vibration suppression and improving the quality of vibration control. Sc A/D has better flexibility than that of constant speed to ensure the operator performance and diminish the force of impact by tempering the initial acceleration. The designed adaptive control law can avoid the control spillover effect and compensate the system parameters uncertainty. In practice, time-varying boundary interference and distributed disturbance exist in the system. The interference observer is used to track and eliminate the unknown disturbance of the system. The control strategy guarantees the stability of the closed-loop system and the uniform boundedness of all closed-loop states. The numerical simulation results test the effectiveness of the proposed control strategy.

20.
Nano Lett ; 23(23): 11353-11359, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38048141

Polar skyrmions have been widely investigated in oxide heterostructures due to their exotic properties and intriguing physical insights. However, the field-driven motion of polar skyrmions, akin to that of the magnetic counterpart, remains elusive. Herein, using phase-field simulations, we demonstrate the dynamic motion of polar skyrmions with integrated external thermal, electrical, and mechanical stimuli. External heating reduced the spontaneous polarization, while an applied electric field decreased the skyrmion size and weakened the interactions between the skyrmions. Together, the skyrmion motion barrier is significantly reduced from 40 to 2 eV under 9 V at 500 K. An applied mechanical force transformed the skyrmions into a c-domain region near the indenter center under the electric field, providing the space and driving force needed for the motion of the skyrmions. This study confirms that polar skyrmions can move like particles and provides concrete design principles for polar skyrmion-based electronic devices.

...