Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
PLoS Negl Trop Dis ; 17(5): e0011350, 2023 05.
Article En | MEDLINE | ID: mdl-37256871

BACKGROUND: The neurotrophic parasite Toxoplasma gondii (T. gondii) has been implicated as a risk factor for neurodegenerative diseases. However, there is only limited information concerning its underlying mechanism and therapeutic strategy. Here, we investigated the effects of T. gondii chronic infection on the goal-directed cognitive behavior in mice. Moreover, we evaluated the preventive and therapeutic effect of dimethyl itaconate on the behavior deficits induced by the parasite. METHODS: The infection model was established by orally infecting the cysts of T. gondii. Dimethyl itaconate was intraperitoneally administered before or after the infection. Y-maze and temporal order memory (TOM) tests were used to evaluate the prefrontal cortex-dependent behavior performance. Golgi staining, transmission electron microscopy, indirect immunofluorescence, western blot, and RNA sequencing were utilized to determine the pathological changes in the prefrontal cortex of mice. RESULTS: We showed that T. gondii infection impaired the prefrontal cortex-dependent goal-directed behavior. The infection significantly downregulated the expression of the genes associated with synaptic transmission, plasticity, and cognitive behavior in the prefrontal cortex of mice. On the contrary, the infection robustly upregulated the expression of activation makers of microglia and astrocytes. In addition, the metabolic phenotype of the prefrontal cortex post infection was characterized by the enhancement of glycolysis and fatty acid oxidation, the blockage of the Krebs cycle, and the disorder of aconitate decarboxylase 1 (ACOD1)-itaconate axis. Notably, the administration of dimethyl itaconate significantly prevented and treated the cognitive impairment induced by T. gondii, which was evidenced by the improvement of behavioral deficits, synaptic ultrastructure lesion and neuroinflammation. CONCLUSION: The present study demonstrates that T. gondii infection induces the deficits of the goal-directed behavior, which is associated with neuroinflammation, the impairment of synaptic ultrastructure, and the metabolic shifts in the prefrontal cortex of mice. Moreover, we report that dimethyl itaconate has the potential to prevent and treat the behavior deficits.


Toxoplasma , Toxoplasmosis , Animals , Mice , Toxoplasma/physiology , Neuroinflammatory Diseases , Goals , Toxoplasmosis/complications
3.
Inflammation ; 46(2): 534-554, 2023 Apr.
Article En | MEDLINE | ID: mdl-36484925

Noninfectious liver injury, including the effects of chemical material, drugs and diet, is a major cause of liver diseases worldwide. In chemical and drugs-induced liver injury, innate inflammatory responses are mediated by extracellular danger signals. The S100 protein can act as danger signals, which can promote the migration and chemotaxis of immune cells, promote the release of various inflammatory cytokines, and regulate the body's inflammatory and immune responses. However, the role of S100A6 in inflammatory response in chemical and drugs-induced sterile liver injury remains unclear. We constructed the model of sterile liver injury induced by carbon tetrachloride (CCl4)/Paracetamol (APAP) and performed RNA sequencing (RNA-seq) on the liver tissues after injury (days 2 and 5). We analyzed inflammatory protein secretion in the liver tissue supernatant by enzyme-linked immunosorbent assay (ELISA), determined the inflammation response by bioinformatic analysis during sterile liver injury, and assessed mononuclear/macrophage infiltration by immunohistochemistry and flow cytometry. Immunohistochemistry was used to analyze the location of S100A6. We conducted inflammatory factor expression analysis and molecular mechanistic studies in Kupffer cells (KCs) induced by S100A6 using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), ELISA, and western blot in vitro experiments. We performed chemokine CCL2 expression analysis and molecular mechanism studies using the same method. We used a Transwell assay to show the infiltration of mononuclear/macrophage. We here observed that aggravated inflammatory response was shown in CCl4 and APAP-administrated mice, as evidenced by enhanced production of inflammatory cytokines (TNF-α, IL-1ß), and elevated mononuclear/macrophage infiltration and activation of immunity. The expression of S100A6 was significantly increased on day 2 after sterile liver injury, which is primarily produced by injured liver cells. Mechanistic studies established that S100A6 activates Kupffer cells (KCs) via the p-P38, p-JNK and P65 pathways to induce inflammation in vitro. Furthermore, TNF-α can stimulate liver cells via the p-P38 and p-JNK pathways to produce CCL2 and promote the infiltration of mononuclear/macrophage. In summary, we showed that S100A6 plays an important role in regulating inflammation, thus influencing sterile liver injury. Our findings provide novel evidence that S100A6 can as a danger signal that contributes to pro-inflammatory activation through p-P38 and p-JNK pathways in CCl4 and APAP-induced sterile liver injury in mice. In addition, the inflammatory factor TNF-α induces a large amount of CCL2 production in normal liver cells surrounding the injured area through a paracrine action, which is chemotactic for blood mononuclear/macrophage infiltration.


Chemical and Drug Induced Liver Injury , Kupffer Cells , Animals , Mice , Chemical and Drug Induced Liver Injury/metabolism , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Liver/metabolism , Macrophages/metabolism , MAP Kinase Signaling System , Tumor Necrosis Factor-alpha/metabolism
4.
Cell Cycle ; 21(24): 2635-2650, 2022 12.
Article En | MEDLINE | ID: mdl-35957539

Liver injury from any number of causes (e.g. chemical material, drugs and diet, viral infection) is a global health problem, and its mechanism is not clearly understood. MicroRNAs (miRNAs) expression profiling is gaining popularity because miRNAs, as key regulators in gene expression networks, can influence many biological processes and have also shown promise as biomarkers for disease. Previous studies reported the regulation effects of miRNAs in liver injury, whereas function and molecular mechanisms of miR-322-5p were still unclear. Therefore, our study focused on the biological role of miR-322-5p in carbon tetrachloride (CCl4)-induced liver injury proliferation, apoptosis, and cell cycle. A mouse model of CCl4-induced liver injury was established, and the transcriptomes and miRNAs transcriptomes of 2d and 5d liver tissues after injury were sequenced. The expression of miR-322-5p and the cell cycle genes were detected in liver tissues and Hepa1-6 cell line by miRNA RT-PCR, qRT-PCR. The effects of miR-322-5p on liver cell proliferation, cell cycle and apoptosis were evaluated using MTS assays and flow cytometry analysis. The relationship between miR-322-5p and Wee1 was predicted and confirmed by bioinformatics analysis and a dual luciferase reporter assay. Functional experiments, including an MTS assay and flow cytometric analysis, were performed to study the effects of Wee1. MiR-322-5p was upregulated in injury liver tissues, and downregulated miR-322-5p was proved to inhibit proliferation, apoptosis and arrest cell cycle at G2/M in vitro. The dual-luciferase reporter assay results indicated that miR-322-5p has a binding site at position 285 in the Wee1 3´UTR. The effects of miR-322-5p in proliferation and cell cycle regulation can be abolished by Wee1 through rescue experiments. By directly targeting Wee1 influenced the expression of several cell cycle factors, including Cyclin dependent kinase 1 (Cdk1), cyclin B1 (Ccnb1) and Cell division cyclin 25C (Cdc25C). MiR-322-5p may function as a suppressive factor by negatively controlling Wee1, thus, highlighting the potential role of miR-322-5p as a therapeutic target for liver injury.Abbreviations: ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; GSH: Glutathione, γ-glutamyl cysteinel + glycine; CCl4: Carbon tetrachloride; HE: Haematoxylin and eosin; KEGG: Kyoto Encyclopedia of Genes and Genomes.


Chemical and Drug Induced Liver Injury, Chronic , MicroRNAs , Mice , Animals , Gene Expression Regulation, Neoplastic , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury, Chronic/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Cycle/genetics , Apoptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Division
5.
Front Immunol ; 13: 1043572, 2022.
Article En | MEDLINE | ID: mdl-36618398

Background: Neurodegenerative diseases including AD is currently one of intractable problems globally due to the insufficiency of intervention strategies. Long-term infection of Toxoplasma gondii (T. gondii) can induce cognitive impairment in hosts, which is closely implicated in the pathogenesis of neurodegenerative diseases. Aconitate decarboxylase 1 (Acod1) and its produced metabolite itaconate (termed Acod1/itaconate axis), have recently attracted extensive interests due to its anti-inflammatory role in macrophages. However, whether the axis can influence cognitive function remains unknown. Methods: A chronic T. gondii-infected mice (C57BL/6J) model was established via administration of cysts by gavage. Novel location (NL), novel object recognition (NOR), Y-maze spatial memory and nest building tests were used to evaluate the behavior performance. Transmission electron microscopy, immunofluorescence, RT-PCR, western-blotting and RNA sequencing were utilized to determine the pathological changes, neuroinflammation and transcription profile in hippocampus tissues post infection, respectively. Moreover, the protective effect of Acod1/itaconate axis in T. gondii-induced cognitive deficits was evaluated. Results: We found that the latent infection of the parasite impaired the cognitive function, which was assessed behaviorally by novel location (NL), novel object recognition (NOR), Y-maze spatial memory and nest building tests. RNA sequencing of hippocampus showed that the infection downregulated the expression of genes related to synaptic plasticity, transmission and cognitive behavior. To our attention, the infection robustly upregulated the expression of genes associated with pro-inflammatory responses, which was characterized by microglia activation and disorder of Acod1/itaconate axis. Interestingly, administration of dimethyl itaconate (DI, an itaconate derivative with cell membrane permeability) could significantly ameliorate the cognitive deficits induced by T. gondii, which was proved by improvement of behavior performance and synaptic ultrastructure impairment, and lower accumulation of pro-inflammatory microglia. Notably, DI administration had a potential therapeutic effect on the cognitive deficits and synaptic impairment induced by the parasitic infection. Conclusions: Overall, these findings provide a novel insight for the pathogenesis of T. gondii-related cognitive deficits in hosts, and also provide a novel clue for the potential therapeutic strategies.


Cognitive Dysfunction , Toxoplasma , Mice , Animals , Neuroinflammatory Diseases , Persistent Infection , Mice, Inbred C57BL , Cognition , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology
...