Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Syst Biol Reprod Med ; 70(1): 131-138, 2024 Dec.
Article En | MEDLINE | ID: mdl-38833557

Gonadotropin-releasing hormone (GnRH) vaccines have been successfully used for the inhibition of gonadal development and function, but current GnRH-based vaccines often present variability in the response. Cross-reactive material 197 (CRM197) has been used as carrier molecules to enhance an immune response to associated antigens. So, the synthetic mammalian tandem-repeated GnRH hexamer (GnRH6) gene was integrated into the expression plasmid pET-21a. Recombinant GnRH6-CRM197 protein was subsequently overexpressed in Escherichia coli strain BL21 and purified through Nickel column affinity chromatography and the antigenicity and biological effects of GnRH6-CRM197 were evaluated in rats. Sixteen 4-month-old adult male rats were randomly divided into two groups: the GnRH6-CRM197 group (n = 8) and the control group (n = 8). The GnRH6-CRM197 group rats were subcutaneously immunized with 100 µg of GnRH6-CRM197, administered thrice at 2-week intervals with GnRH6-CRM197.The control group received only a white oil adjuvant. Following the initial immunization, the weights of animals were recorded, and blood samples were collected from the orbital sinus at 4, 4.5, 5, 5.5, 6, 6.5, and 7 months. Serum antibody titers and testosterone concentrations were quantified using ELISA and CLIA, respectively. Additionally, testicular tissues were collected for morphological examination. The results revealed a significant increase in serum GnRH antibody titers (p < 0.05), but a significant decrease in serum testosterone concentrations (p < 0.05), and the weight, length, width, and girth of the testis, and the number of spermatogonia cells, spermatocytes, and sperm cells in the immunized rats. Furthermore, seminiferous tubules revealed significant atrophy and no sperm were observed in the immunized animals. Thus, GnRH6-CRM197 may be an effective antigen and a potential immunocastration vaccine.


Gonadotropin-Releasing Hormone , Animals , Male , Gonadotropin-Releasing Hormone/immunology , Rats , Testis/drug effects , Testosterone/blood , Rats, Sprague-Dawley , Immunization
2.
J Vet Med Sci ; 86(5): 497-506, 2024 May 06.
Article En | MEDLINE | ID: mdl-38479882

The study aimed to investigate the effect of Grid1, encoding the glutamate ionotropic receptor delta type subunit 1 (GluD1), on puberty onset in female rats. Grid1 mRNA and protein expression was detected in the hypothalamus of female rats at prepuberty and puberty. The levels of Grid1 mRNA in the hypothalamus, the fluorescence intensity in the arcuate nucleus and paraventricular nucleus of the prepubertal rats was significantly lower than pubertal. Additionally, the expression of Grid1 was suppressed in primary hypothalamus cells and prepubertal rat. Finally, investigated the effect of Grid1 knockdown on puberty onset and reproductive performance. Treatment of hypothalamic neurons with LV-Grid1 decreased the level of Grid1 and Rfrp-3 (encoding RFamide-related peptide 3) mRNA expression, but increased the Gnrh (encoding gonadotropin-releasing hormone) mRNA levels. After an ICV injection, the time for the rat vaginal opening occurred earlier. Moreover, Gnrh mRNA expression was increased, whereas Rfrp-3 mRNA expression was decreased in the hypothalamus. The concentration of progesterone (P4) in the serum was significantly decreased compare with control group. Ovary hematoxylin-eosin staining revealed that the LV-Grid1 group mainly contained primary and secondary follicles. The reproductive performance of the rats was not affected by the Grid1 knockdown. Therefore, Grid1 may affect the onset of puberty in female rats by regulating the levels of Gnrh, and Rfrp-3 in the hypothalamus, as well as the concentrations of P4, but not reproduction performance.


Gonadotropin-Releasing Hormone , Hypothalamic Hormones , Hypothalamus , Sexual Maturation , Animals , Female , Rats , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/genetics , Hypothalamus/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Progesterone/blood , Progesterone/metabolism , Rats, Sprague-Dawley , RNA, Messenger/metabolism , RNA, Messenger/genetics , Sexual Maturation/physiology
...