Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Small ; 20(12): e2307537, 2024 Mar.
Article En | MEDLINE | ID: mdl-37939303

Constructing effective and robust biocatalysts with carbonic anhydrase (CA)-mimetic activities offers an alternative and promising pathway for diverse CO2-related catalytic applications. However, there is very limited success has been achieved in controllably synthesizing CA-mimetic biocatalysts. Here, inspired by the 3D coordination environments of CAs, this study reports on the design of an ultrafast ZnN3-OH2 center via tuning the 3D coordination structures and mesoporous defects in a zinc-dipyrazolate framework to serve as new, efficient, and robust CA-mimetic biocatalysts (CABs) to catalyze the hydration reactions. Owing to the structural advantages and high similarity with the active center of natural CAs, the double-walled CAB with mesoporous defects displays superior CA-like reaction kinetics in p-NPA hydrolysis (V0 = 445.16 nM s-1, Vmax = 3.83 µM s-1, turnover number: 5.97 × 10-3 s-1), which surpasses the by-far-reported metal-organic frameworks-based biocatalysts. This work offers essential guidance in tuning 3D coordination environments in artificial enzymes and proposes a new strategy to create high-performance CA-mimetic biocatalysts for broad applications, such as CO2 hydration/capture, CO2 sensing, and abundant hydrolytic reactions.

2.
Small ; 19(50): e2303594, 2023 Dec.
Article En | MEDLINE | ID: mdl-37626465

Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.


Anti-Infective Agents , Bacterial Infections , Nanostructures , Humans , Anti-Bacterial Agents/chemistry , Disinfection , Bacterial Infections/drug therapy , Bacteria
3.
Small ; 19(52): e2304532, 2023 Dec.
Article En | MEDLINE | ID: mdl-37649195

Exploring highly efficient, portable, and robust biocatalysts is a great challenge in colorimetric biosensors. To overcome the challenging states in creating single-atom biocatalysts, such as insufficient activity and stability, here, this work has engineered a unique CeO2 support as nanoglue to tightly anchor the Ru single-atom sites (CeO2 -Ru) with strong electronic coupling for achieving highly sensitive and robust H2 O2 -related biocatalytic diagnosis. The morphology and chemical/electronic structure analysis demonstrates that the Ru atoms are well-dispersed on CeO2 surface to form high-density active sites. Benefiting from the unique structure, the prepared CeO2 -Ru exhibits outstanding peroxidase (POD) like catalytic activity and selectivity to H2 O2 . Steady-state kinetic study results show that the CeO2 -Ru presents the highest Vmax and turnover number than the state-of-the-art POD-like biocatalysts. Consequently, the CeO2 -Ru discloses a high efficiency, good selectivity, and robust stability in the colorimetric detection of L-cysteine, glucose, and uric acid. Notably, the limit of detection (LOD) can reach 0.176 × 10-3 m for the L-cysteine, 0.095 × 10-3 m for the glucose, and 0.088 × 10-3 m for the uric acid via cascade reaction. This work suggests that the proposed unique CeO2 nanoglue will offer a new path to create single-atom noble metal biocatalysts and take a step closer to future biotherapeutic and biocatalytic applications.


Cysteine , Uric Acid , Peroxidase , Peroxidases , Coloring Agents , Glucose/analysis
4.
Small ; 19(42): e2302744, 2023 10.
Article En | MEDLINE | ID: mdl-37322373

Non-invasive cancer treatment strategies that enable local non-thermal ablation, hypoxia relief, and reactive oxygen species (ROS) production to achieve transiently destroying tumor tissue and long-term killing tumor cells would greatly facilitate their clinical applications. However, continuously generating oxygen cavitation nuclei, reducing the transient cavitation sound intensity threshold, relieving hypoxia, and improving its controllability in the ablation area still remains a significant challenge. Here, in this work, an Mn-coordinated polyphthalocyanine sonocavitation agent (Mn-SCA) with large d-π-conjugated network and atomic Mn-N sites is identified for the non-thermal sonocavitation and sonodynamic therapy in the liver cancer ablation. In the tumor microenvironment, the catalytical generation of oxygen assists cavitation formation and generates microjets to ablate liver cancer tissue and relieve hypoxia, this work reports for the first time to utilize the enzymatic properties of Mn-SCA to lower the cavitation threshold in situ. Moreover, under pHIFU irradiation, high reactive oxygen species (ROS) production can be achieved. The two merits in liver cancer ablation are demonstrated by cell destruction and high tumor inhibition efficiency. This work will help deepen the understanding of cavitation ablation and the sonodynamic mechanisms related to the nanostructures and guide the design of sonocavitation agents with high ROS production for solid tumor ablation.


High-Intensity Focused Ultrasound Ablation , Liver Neoplasms , Humans , Reactive Oxygen Species , Hypoxia , Oxygen , Liver Neoplasms/therapy , Catalysis , Cell Line, Tumor , Tumor Microenvironment
5.
Adv Mater ; 35(38): e2303331, 2023 Sep.
Article En | MEDLINE | ID: mdl-37295069

Among the platinum-group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption-desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn-oxygen complex, this study reports to design Mn-oxygen compounds coordinated Ru sites (MOC-Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption-desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC-Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long-range H* spillover for H2 -release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC-Ru catalyst holds great potential as cathode for H2 -production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water-splitting cathode.

6.
Small ; 19(27): e2208261, 2023 Jul.
Article En | MEDLINE | ID: mdl-37012603

The lack of high efficiency and pH-universal bifunctional electrocatalysts for water splitting to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) hinders the large-scale production of green hydrogen. Here, an IrPd electrocatalyst supported on ketjenblack that exhibits outstanding bifunctional performance for both HER and OER at wide pH conditions is presented. The optimized IrPd catalyst exhibits a specific activity of 4.46 and 3.98 A mgIr -1 in the overpotential of 100 and 370 mV for HER and OER, respectively, in alkaline conditions. When applied to the anion exchange membrane electrolyzer, the Ir44 Pd56 /KB catalyst shows a stability of >20 h at a current of 250 mA cm-2 for water decomposition, indicating promising prospects for practical applications. Beyond offering an advanced electrocatalyst, this work also guides the rational design of desirable bifunctional electrocatalysts for HER and OER by regulating the microenvironments and electronic structures of metal catalytic sites for diverse catalysis.

7.
Angew Chem Int Ed Engl ; 62(22): e202302329, 2023 05 22.
Article En | MEDLINE | ID: mdl-37002706

Constructing highly effective biocatalysts with controllable coordination geometry for eliminating reactive oxygen species (ROS) to address the current bottlenecks in stem-cell-based therapeutics remains challenging. Herein, inspired by the coordination structure of manganese-based antioxidase, we report a manganese-coordinated polyphthalocyanine-based biocatalyst (Mn-PcBC) with axial Mn-N5 sites and 2D d-π-conjugated networks that serves as an artificial antioxidase to rescue stem cell fate. Owing to the unique chemical and electronic structures, Mn-PcBC displays efficient, multifaceted, and robust ROS-scavenging activities, including elimination of H2 O2 and O2 ⋅- . Consequently, Mn-PcBC efficiently rescues the bioactivity and functionality of stem cells in high-ROS-level microenvironments by protecting the transcription of osteogenesis-related genes. This study offers essential insight into the crucial functions of axially coordinated Mn-N5 sites in ROS scavenging and suggests new strategies to create efficient artificial antioxidases for stem-cell therapies.


Manganese , Stem Cells , Reactive Oxygen Species , Manganese/chemistry , Cell Differentiation
8.
Small ; 19(14): e2206949, 2023 Apr.
Article En | MEDLINE | ID: mdl-36599619

Ruthenium (Ru)-based catalysts have displayed compelling hydrogen evolution activities, which hold the promising potential to substitute platinum in alkaline H2 -evolution. In the challenging alkaline electrolytes, the water-dissociation process involves multistep reactions, while the profound origin and intrinsic factors of diverse Ru species on water-dissociation pathways and reaction principles remain ambiguous. Here the fundamental origin of water-dissociation pathways of Ru-based catalysts in alkaline media to be from their unique electronic structures in complex coordination environments are disclosed. These theoretical results validate that the modulated electronic structures with delocalization-localization coexistence at their boundaries between the Ru nanocluster and single-atom site have a profound influence on water-dissociation pathways, which push H2 O* migration and binding orientation during the splitting process, thus enhancing the dissociation kinetics. By creating Ru catalysts with well-defined nanocluster, single-atom site, and also complex site, the electrocatalytic data shows that both the nanocluster and single-atom play essential roles in water-dissociation, while the complex site possesses synergistically enhanced roles in alkaline electrolytes. This study discloses a new electronic structure-dependent water-dissociation pathway and reaction principle in Ru-based catalysts, thus offering new inspiration to design efficient and durable catalysts for the practical production of H2 in alkaline electrolytes.

9.
Small ; 19(15): e2207527, 2023 Apr.
Article En | MEDLINE | ID: mdl-36651013

Achieving single-atom catalysts (SACs) with high metal content and outstanding performance as well as robust stability is critically needed for clean and sustainable energy. However, most of the synthesized SACs are undesired on the loading content of the metal due to the anchored metals and the supports as well as the synthesizing methods. Herein, a Rh-SAC with high accessibility by loading it on the metal nodes of metal-porphyrin-based PCN MOFs (PCN-224) as supporting material is reported. Significantly, the PCN-Rh15.9 /KB catalyst with a high Rh content of 15.9 wt% exhibits excellent hydrogen evolution activity with a low overpotential of 25 mV at a current density of 10 mA cm-2 and a mass activity of 7.7 A mg-1 Rh at overpotential of 150 mV, which is much better than that of the commercial Rh/C. Various characterizations reveal the Rh species is stabilized by the metal nodes bearing -O/OHx in MOFs, which is of importance for the high loading amount and the good activity. This work establishes an efficient approach to synthesize high content SACs on the nodes of MOFs for wide catalyst design.

10.
Small ; 19(2): e2204738, 2023 01.
Article En | MEDLINE | ID: mdl-36403218

Compared to platinum catalysts, ruthenium (Ru) is disclosed as a promising alternative for alkaline water electrolysis due to its similar hydrogen adsorption energy and relatively lower water dissociation barrier. However, in the challenging alkaline media, the dissatisfied Volmer step during water dissociation of Ru metal prohibits its practical applications. Here, a new pathway to modulate the electronic environment of Ru catalysts via a local charge transfer strategy for tuning the water dissociation kinetics and accelerating the alkaline water electrolysis is proposed. The obtained catalysts are engineered by assembling and subsequently pyrolyzing the layer-stacked and 2D porphyrin-based Ru-N coordination polymers on nanocarbon supports. Benefiting from the well-defined Ru nanocluster-Nx -coordination bonds (Runc -Nx ), unique electronic environments, and local charge transfer properties, the catalysts exhibit the exceptional activity of 17 mV overpotential at 10 mA cm-2 and robust stability in water, which is more efficient than state-of-the-art Ru catalysts. The theoretical calculation suggests that the Runc -Nx sites enhance the nucleophilic attack of water and weaken the HOH bond. This study manifests that tailoring the bond environments of Ru clusters can significantly modulate their intrinsic catalytic activities and stabilities, which may open new avenues for developing high-active and durable catalysts for water electrolysis.


Ruthenium , Electronics , Adsorption , Electrolysis , Water
11.
J Mater Chem B ; 10(38): 7862-7874, 2022 10 05.
Article En | MEDLINE | ID: mdl-36070446

Rheumatoid arthritis (RA), one of the systemic autoimmune diseases, features dysregulated inflammation that can eventually lead to multi-joint destruction and deformity. Although current clinical RA treatment agents including non-steroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs, and biological agents can alleviate symptoms, there can be long-term drug dependence and considerable side effects. To promote the course of RA from inflammation to resolution and ultimately terminate the vicious cycle of recrudescence, it is important to regulate the pro-/anti-inflammatory abilities of macrophages for constructing an immunosuppressive or anti-inflammatory microenvironment. Macrophage-derived exosomes can be homed or targeted to inflammatory tissues or cells; however, the insufficient anti-inflammatory abilities and intrinsic off-target effects of these exosomes often result in unsatisfactory treatment effects, which remains a challenge in the treatment of RA. Here, we proposed a novel kind of inherent anti-inflammatory exosome (AI-Exo), which was prepared via integrating RAW264.7 macrophage-derived exosomes and a powerful anti-inflammatory immune modulator interleukin-10 by an electroporation method. Then, non-invasive ultrasound was used to increase the permeability of blood vessels and augment the targeted accumulation of AI-Exo to inflammatory tissues, which could promote macrophage polarization to M2 phenotypes, relieve inflammation symptoms, stimulate resolution, and accelerate tissue repair against collagen-induced arthritis. This work intensely supports that ultrasound-augmented AI-Exo has significant targeted anti-inflammatory therapeutic effects, and the combined mechanism of anti-inflammation and pro-resolution gives unique insights into the treatment of not only RA but also other inflammatory diseases, which provides an effective strategy and a promising prospect for future wider biomedical applications and clinical transformations.


Antirheumatic Agents , Arthritis, Rheumatoid , Exosomes , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Humans , Inflammation/drug therapy , Interleukin-10/therapeutic use
12.
Adv Mater ; 34(46): e2206208, 2022 Nov.
Article En | MEDLINE | ID: mdl-36065047

Exploring high-efficiency reactive oxygen species (ROS)-elimination materials is of great importance for combating oxidative stress in diverse diseases, especially stem-cell-based biotherapeutics. By mimicking the FeN active centers of natural catalase, here, an innovative concept to design ROS-elimination artificial biocatalysts with Ru catalytic centers for stem-cell protection is reported. The experimental studies and theoretical calculations have systematically disclosed the activity merits and structure diversities of different Ru sites when serving as ROS-elimination artificial biocatalysts. Benefiting from the metallic electronic structures and synergetic effects of multiple sites, the artificial biocatalysts with Ru cluster centers present exceptional ROS-elimination activity; notably, it shows much higher catalytic efficiency per Ru atom on decomposing H2 O2 when compared to the isolated single-atom Ru sites, which is more efficient than that of the natural antioxidants and recently reported state-of-the-art ROS-scavenging biocatalysts. The systematic stem-cell protection studies reveal that the catalase-like artificial biocatalysts can provide efficient rescue ability for survival, adhesion, and differentiation functions of human mesenchymal stem cells in high ROS level conditions. It is suggested that applying these artificial biocatalysts with Ru cluster centers will offer a new pathway for engineering high-performance ROS-scavenging materials in stem-cell-based therapeutics and many other ROS-related diseases.


Cytoprotection , Oxidative Stress , Humans , Catalase/metabolism , Reactive Oxygen Species/metabolism , Catalysis
13.
Adv Mater ; 34(41): e2206368, 2022 Oct.
Article En | MEDLINE | ID: mdl-35987876

Platinum-based catalysts occupy a pivotal position in diverse catalytic applications in hydrogen chemistry and electrochemistry, for instance, the hydrogen evolution reactions (HER). While adsorbed Pt atoms on supports often cause severe mismatching on electronic structures and HER behaviors from metallic Pt due to the different energy level distribution of electron orbitals. Here, the design of crystalline lattice-confined atomic Pt in metal carbides using the Pt-centered polyoxometalate frameworks with strong PtO-metal covalent bonds is reported. Remarkably, the lattice-confined atomic Pt in the tungsten carbides (Ptdoped @WCx , both Pt and W have atomic radii of 1.3 Å) exhibit near-zero valence states and similar electronic structures as metallic Pt, thus delivering matched energy level distributions of the Pt 5dz 2 and H 1s orbitals and similar acidic hydrogen evolution behaviors. In alkaline conditions, the Ptdoped @WCx exhibits 40 times greater mass activity (49.5 A mgPt -1 at η = 150 mV) than the Pt@C because of the favorable water dissociation and H* transport. These findings offer a universal pathway to construct urgently needed atomic-scale catalysts for broad catalytic reactions.

14.
Adv Mater ; 34(16): e2200255, 2022 Apr.
Article En | MEDLINE | ID: mdl-35132711

MetalN-coordinated centers supported by carbonaceous substrates have emerged as promising artificial metalloenzymes (AMEs) to mimic the biocatalytic effects of their natural counterparts. However, the synthesis of well-defined AMEs that contain different atomic metalN centers but present similar physicochemical and coordination structures remains a substantial challenge. Here, 20 different types of AMEs with similar geometries and well-defined atomic metalN-coordinated centers are synthesized to compare and disclose the catalytic activities, substrate selectivities, kinetics, and reactive oxygen species (ROS) products. Their oxidase (OXD)-, peroxidase (POD)-, and halogen peroxidase (HPO)-mimetic catalytic behaviors are systematically explored. The Fe-AME shows the highest OXD- and HPO-mimetic activities compared to the other AMEs due to its high vmax (0.927 × 10-6 m s-1 ) and low Km (1.070 × 10-3 m), while the Cu-AME displays the best POD-like performance. Furthermore, theoretical calculation reveals that the ROS-catalytic paths and activities are highly related to the electronic structures of the metal centers. Benefiting from its facile adsorption of H2 O2 molecule and lower energy barrier to generating •O2 - , the Fe-AME displays higher ROS-catalytic performances than the Mn-AME. The engineered AMEs show not only remarkably high ROS-catalytic performances but also provide new guidance toward developing metalN-coordinated biocatalysts for broad application fields.


Metalloproteins , Peroxidase , Catalysis , Metals , Oxidoreductases , Peroxidase/chemistry , Peroxidases , Reactive Oxygen Species
15.
Adv Mater ; 34(17): e2108646, 2022 Apr.
Article En | MEDLINE | ID: mdl-35181946

Nanomaterials-based artificial enzymes (AEs) have flourished for more than a decade. However, it is still challenging to further enhance their biocatalytic performances due to the limited strategies to tune the electronic structures of active centers. Here, a new path is reported for the de novo design of the d electrons of active centers by modulating the electron transfer in vanadium-based AEs (VOx -AE) via a unique Zn-O-V bridge for efficient reactive oxygen species (ROS)-catalysis. Benefiting from the electron transfer from Zn to V, the V site in VOx -AE exhibits a lower valence state than that in V2 O5 , which results in charge-filled V-dyz orbital near the Fermi level to interfere with the formation of sigma bonds between the V- d z 2 and O-pz orbitals in H2 O2 . The VOx -AE exhibits a twofold Vmax and threefold turnover number than V2 O5 when catalyzing H2 O2 . Meanwhile, the VOx -AE shows enhanced catalytic eradication of drug-resistant bacteria and achieves comparable wound-treatment indexes to vancomycin. This modulating charge-filling of d electrons provides a new direction for the de novo design of nanomaterials-based AEs and deepens the understanding of ROS-catalysis.


Disinfection , Vanadium , Catalysis , Electrons , Reactive Oxygen Species , Vanadium/chemistry
16.
Angew Chem Int Ed Engl ; 61(13): e202115331, 2022 Mar 21.
Article En | MEDLINE | ID: mdl-34936185

Developing low-cost electrocatalysts for efficient and robust oxygen evolution reaction (OER) is the key for scalable water electrolysis, for instance, NiFe-based materials. Decorating NiFe catalysts with other transition metals offers a new path to boost their catalytic activities but often suffers from the low controllability of the electronic structures of the NiFe catalytic centers. Here, we report an interfacial atom-substitution strategy to synthesize an electrocatalytic oxygen-evolving NiFeV nanofiber to boost the activity of NiFe centers. The electronic structure analyses suggest that the NiFeV nanofiber exhibits abundant high-valence Fe via a charge transfer from Fe to V. The NiFeV nanofiber supported on a carbon cloth shows a low overpotential of 181 mV at 10 mA cm-2 , along with long-term stability (>20 h) at 100 mA cm-2 . The reported substitutional growth strategy offers an effective and new pathway for the design of efficient and durable non-noble metal-based OER catalysts.

17.
Angew Chem Int Ed Engl ; 60(41): 22513-22521, 2021 Oct 04.
Article En | MEDLINE | ID: mdl-34387407

We synthesized a series of carbon-supported atomic metal-N-C catalysts (M-SACs: M=Mn, Fe, Co, Ni, Cu) with similar structural and physicochemical properties to uncover their catalytic activity trends and mechanisms. The peroxymonosulfate (PMS) catalytic activity trends are Fe-SAC>Co-SAC>Mn-SAC>Ni-SAC>Cu-SAC, and Fe-SAC displays the best single-site kinetic value (1.65×105  min-1 mol-1 ) compared to the other metal-N-C species. First-principles calculations indicate that the most reasonable reaction pathway for 1 O2 production is PMS→OH*→O*→1 O2 ; M-SACs that exhibit moderate and near-average Gibbs free energies in each reaction step have a better catalytic activity, which is the key for the outstanding performance of Fe-SACs. This study gives the atomic-scale understanding of fundamental catalytic trends and mechanisms of PMS-assisted reactive oxygen species production via M-SACs, thus providing guidance for developing M-SACs for catalytic organic pollutant degradation.

18.
Adv Mater ; 33(29): e2101095, 2021 Jul.
Article En | MEDLINE | ID: mdl-34096109

The diversity, complexity, and heterogeneity of malignant tumor seriously undermine the efficiency of mono-modal treatment. Recently, multi-modal therapeutics with enhanced antitumor efficiencies have attracted increasing attention. However, designing a nanotherapeutic platform with uniform morphology in nanoscale that integrates with efficient chem-/sono-/photo-trimodal tumor therapies is still a great challenge. Here, new and facile Pd-single-atom coordinated porphyrin-based polymeric networks as biocatalysts, namely, Pd-Pta/Por, for chem-/sono-/photo-trimodal tumor therapies are designed. The atomic morphology and chemical structure analysis prove that the biocatalyst consists of atomic Pd-N coordination networks with a Pd-N2 -Cl2 catalytic center. The characterization of peroxidase-like catalytic activities displays that the Pd-Pta/Por can generate abundant •OH radicals for chemodynamic therapies. The ultrasound irradiation or laser excitation can significantly boost the catalytic production of 1 O2 by the porphyrin-based sono-/photosensitizers to achieve combined sono-/photodynamic therapies. The superior catalytic production of •OH is further verified by density functional theory calculation. Finally, the corresponding in vitro and in vivo experiments have demonstrated their synergistic chem-/sono-/photo-trimodal antitumor efficacies. It is believed that this study provides new promising single-atom-coordinated polymeric networks with highly efficient biocatalytic sites and synergistic trimodal therapeutic effects, which may inspire many new findings in reactive oxygen species-related biological applications across broad therapeutics and biomedical fields.


Photosensitizing Agents , HeLa Cells , Humans , Photochemotherapy , Porphyrins , Reactive Oxygen Species
...