Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39309083

RESUMEN

Polymer microstructures rely on tacticity, yet exploration in polyamines has focused predominantly on atactic polymers. We introduce a method to synthesize a diverse library of ortho and para-cyanobenzenesulfonyl-activated-methyl aziridines using R, S, and racemic alaninol. Living anionic ring-opening polymerization of racemic sulfonyl aziridines yields soluble polymers, while enantiomerically-pure sulfonyl aziridines follow a dispersion polymerization with complete monomer conversion giving access to stereoblock copolymers. Removal of activation groups is achieved using dodecanethiol and tert-butylimino-tri(pyrrolidino)phosphorane to obtain isotactic or atactic linear polypropylene imines (LPPIs). High-purity L-PPIs are obtained in salt and neutral forms with high yields. Stereoblock copolymers of poly-R-block-S-polysulfonamides and respective polypropylene imine stereoblocks are synthesized, revealing helical structures in water influenced by the monomer type and sequence in CD spectroscopy. Molecular dynamics simulations confirm the helical nature of isotactic LPPIs in water. Bulk characterization demonstrates the first crystalline isotactic polyamines via spherulite growth in polarized light, atomic force microscopy and XRD analyses. In cell-transfection studies, the synthesized isotactic LPPIs exhibit lower toxicity and transfection efficiency than commercial hyperbranched polyethylene imine, with longer chains showing increased transfection efficiency. These isotactic polymers open avenues for complex macromolecular architectures with optically active polyamines akin to poly(amino acid)s but lacking hydrolytically cleavable amide links.

2.
Adv Mater ; : e2406831, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39072806

RESUMEN

Microplastic pollution and the urgent need for sustainable agriculture have raised interest in developing degradable carriers for controlled agrochemical release. Porous polymeric particles are particularly promising due to their unique release profiles compared to solid or core-shell carriers. However, creating degradable, mesoporous (2-50 nm) microparticles is challenging, and their potential for agrochemical delivery is largely unexplored. A straightforward self-assembly method is demonstrated for fully degradable porous polymer cubosomes (PCs), showcasing their ability to load and release agrochemicals. Using fully degradable block copolymers (BCPs), poly(ethyl ethylene phosphate)-b-polylactide (PEEP-b-PLA), PCs are synthesized in water with high inner order and open pores averaging 19 ± 3 nm in diameter. During the self-assembly process in the presence of the hydrophobic fungicide tebuconazole, polymersomes transform into PCs by enriching the hydrophobic polymer domain and altering the BCP packing parameter. After self-assemby, highly porous and fungicide-loaded PCs are obtained. Fungicide-loaded PCs show high antimycotic activity against Botrytis cinerea (grey mold), adhere to Vitis vinifera Riesling leaves even after simulated rain, and release the fungicide continuously over several days with different release-kinetics compared to solid particles. PCs hydrolyze completely into lactic acid and phosphate derivatives, highlighting their potential as microplastic-free agrochemical delivery systems for sustainable agriculture.

3.
Protein Sci ; 33(6): e5032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801224

RESUMEN

The conjugation of proteins with polymers offers immense biotechnological potential by creating novel macromolecules. This article presents experimental findings on the structural properties of maltose-binding protein (MBP) conjugated with linear biodegradable polyphosphoester polymers with different molecular weights. We studied isotopic effects on both proteins and polymers. Circular dichroism and fluorescence spectroscopy and small-angle neutron scattering reveal that the conjugation process destabilizes the protein, affecting the secondary more than the tertiary structure, even at room temperature, and that the presence of two domains in the MBP may contribute to its observed instability. Notably, unfolding temperatures differ between native MBP and the conjugates. In particular, this study sheds light on the complex interplay of factors such as the deuteration influencing protein stability and conformational changes in the conjugation processes. The perdeuteration influences the hydrogen bond network and hydrophobic interactions in the case of the MBP protein. The perdeuteration of the protein influences the hydrogen bond network and hydrophobic interactions. This is evident in the decreased thermal stability of deuterated MBP protein, in the conjugate, especially with high-molecular-mass polymers.


Asunto(s)
Deuterio , Proteínas de Unión a Maltosa , Estabilidad Proteica , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/metabolismo , Deuterio/química , Polímeros/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
4.
J Colloid Interface Sci ; 670: 234-245, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761576

RESUMEN

The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)2(bpy-morph)](PF6)2 (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (1O2). Furthermore, the physicochemical analysis of the PS-Ru-loaded cubosomes dispersion demonstrated that the encapsulation of the photosensitizer within the nanoparticles did not disrupt the three-dimensional arrangement of the lipid bilayer. The biological tests showed that PS-Ru-loaded cubosomes exhibited significant phototoxic activity when exposed to the light source, in stark contrast to empty cubosomes and to the same formulation without irradiation. This promising outcome suggests the potential of the formulation in overcoming the drawbacks associated with the clinical use of RPCs in photodynamic therapy for anticancer treatments.


Asunto(s)
Neoplasias Pulmonares , Fotoquimioterapia , Fármacos Fotosensibilizantes , Rutenio , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Humanos , Rutenio/química , Rutenio/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Antineoplásicos/química , Antineoplásicos/farmacología , Tamaño de la Partícula , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Poloxámero/química , Ensayos de Selección de Medicamentos Antitumorales , Propiedades de Superficie , Células A549
5.
Langmuir ; 40(14): 7249-7256, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38556745

RESUMEN

Polymer brushes are unique surface coatings that have been of high interest in research for the past decades due to their covalent tethering to surfaces and the broad spectrum of polymers that can be grafted to or grafted from various surfaces. Modification of surfaces with brushes may provide lubricious and/or antifouling properties, and they can also potentially be used in many application fields due to their high responsiveness toward certain stimuli. Generally, polymer brushes are long-lasting coatings, while their end-of-life has to date largely been neglected. Therefore, it is important to consider additional design methodologies to produce circular brushes, which will degrade after a certain period of time such that surfaces can be reused, and the potentially obtained monomers may be used again to synthesize new brushes. In this Perspective, we aim to tackle and understand the challenges to translate the knowledge on degradation and chemical recycling of bulk polymers toward circular polymer brushes. We summarized the recent developments on (bio)degradable polymer brushes and the challenges that are to be tackled toward their potential implementation as circular coatings.

6.
ACS Nano ; 18(14): 10031-10044, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38547360

RESUMEN

The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.


Asunto(s)
Lignina , Plaguicidas , Estrobilurinas , Animales , Lignina/química , Plaguicidas/farmacología , Cápsulas/química , Emulsiones/química , Pez Cebra , Agua
7.
Macromolecules ; 56(21): 8856-8865, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024158

RESUMEN

Polymer brushes are widely used as versatile surface modifications. However, most of them are designed to be long-lasting by using nonbiodegradable materials. This generates additional plastic waste and hinders the reusability of substrates. To address this, we present a synthetic strategy for grafting degradable polymer brushes via organocatalytic surface-initiated ring-opening polymerization (SI-ROP) from stable PGMA-based macroinitiators. This yields polyester brush coatings (up to 50 nm in thickness) that hydrolyze with controlled patterns and can be regrown on the same substrate after degradation. We chose polyesters of different hydrolytic stability and degradation mechanism, i.e., poly(lactic acid) (PLA), polycaprolactone (PCL), and polyhydroxybutyrate (PHB), which are grown from poly(glycidyl methacrylate) (PGMA)-based macroinitiators for strong surface binding and initiating site reuse. Brush degradation is monitored via thickness changes in pH-varied buffer solutions and seawater with PHB brushes showing rapid degradation in all solutions. PLA and PCL brushes show higher stability in solutions of up to pH 8, while all coatings fully degrade after 14 days in seawater. These brushes offer surface modifications with well-defined degradation patterns that can be regrown after degradation, making them an interesting alternative to (meth)acrylate-based, nondegradable polymers brushes.

8.
Chem Sci ; 14(40): 11273-11282, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37860667

RESUMEN

Ring-opening metathesis polymerization (ROMP) is a versatile method for synthesizing complex macromolecules from various functional monomers. In this work, we report the synthesis of water-soluble and degradable bottlebrush polymers, based on polyphosphoesters (PPEs) via ROMP. First, PPE-macromonomers were synthesized via organocatalytic anionic ring-opening polymerization of 2-ethyl-2-oxo-1,3,2-dioxaphospholane using N-(hydroxyethyl)-cis-5-norbornene-exo-2,3-dicarboximide as the initiator and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the catalyst. The resulting norbornene-based macromonomers had degrees of polymerization (DPn) ranging from 25 to 243 and narrow molar mass dispersity (D ≤ 1.10). Subsequently, these macromonomers were used in ROMP with the Grubbs 3rd-generation bispyridyl complex (Ru-G3) to produce a library of well-defined bottlebrush polymers. The ROMP was carried out either in dioxane or in aqueous conditions, resulting in well-defined and water-soluble bottlebrush PPEs. Furthermore, a two-step protocol was employed to synthesize double hydrophilic diblock bottlebrush copolymers via ROMP in water at neutral pH-values. This general protocol enabled the direct combination of PPEs with ROMP to synthesize well-defined bottlebrush polymers and block copolymers in water. Degradation of the PPE side chains was proven resulting in low molar mass degradation products only. The biocompatible and biodegradable nature of PPEs makes this pathway promising for designing novel biomedical drug carriers or viscosity modifiers, as well as many other potential applications.

9.
Commun Chem ; 6(1): 182, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658116

RESUMEN

Polyphosphoesters (PPEs) are used in tissue engineering and drug delivery, as polyelectrolytes, and flame-retardants. Mostly polyphosphates have been investigated but copolymers involving different PPE subclasses have been rarely explored and the reactivity ratios of different cyclic phospholanes have not been reported. We synthesized binary and ternary PPE copolymers using cyclic comonomers, including side-chain phosphonates, phosphates, thiophosphate, and in-chain phosphonates, through organocatalyzed ring-opening copolymerization. Reactivity ratios were determined for all cases, including ternary PPE copolymers, using different nonterminal models. By combining different comonomers and organocatalysts, we created gradient copolymers with adjustable amphiphilicity and microstructure. Reactivity ratios ranging from 0.02 to 44 were observed for different comonomer sets. Statistical ring-opening copolymerization enabled the synthesis of amphiphilic gradient copolymers in a one-pot procedure, exhibiting tunable interfacial and magnetic resonance imaging (MRI) properties. These copolymers self-assembled in aqueous solutions, 31 P MRI imaging confirmed their potential as MRI-traceable nanostructures. This systematic study expands the possibilities of PPE-copolymers for drug delivery and theranostics.

10.
Nat Commun ; 14(1): 4351, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468502

RESUMEN

In vivo monitoring of polymers is crucial for drug delivery and tissue regeneration. Magnetic resonance imaging (MRI) is a whole-body imaging technique, and heteronuclear MRI allows quantitative imaging. However, MRI agents can result in environmental pollution and organ accumulation. To address this, we introduce biocompatible and biodegradable polyphosphoesters, as MRI-traceable polymers using the 31P centers in the polymer backbone. We overcome challenges in 31P MRI, including background interference and low sensitivity, by modifying the molecular environment of 31P, assembling polymers into colloids, and tailoring the polymers' microstructure to adjust MRI-relaxation times. Specifically, gradient-type polyphosphonate-copolymers demonstrate improved MRI-relaxation times compared to homo- and block copolymers, making them suitable for imaging. We validate background-free imaging and biodegradation in vivo using Manduca sexta. Furthermore, encapsulating the potent drug PROTAC allows using these amphiphilic copolymers to simultaneously deliver drugs, enabling theranostics. This first report paves the way for polyphosphoesters as background-free MRI-traceable polymers for theranostic applications.


Asunto(s)
Micelas , Polímeros , Polímeros/química , Sistemas de Liberación de Medicamentos/métodos , Imagen por Resonancia Magnética , Portadores de Fármacos/química
11.
Small ; 19(29): e2207199, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37021720

RESUMEN

Optoacoustic (OA, photoacoustic) imaging synergistically combines rich optical contrast with the resolution of ultrasound within light-scattering biological tissues. Contrast agents have become essential to boost deep-tissue OA sensitivity and fully exploit the capabilities of state-of-the-art OA imaging systems, thus facilitating the clinical translation of this modality. Inorganic particles with sizes of several microns can also be individually localized and tracked, thus enabling new applications in drug delivery, microrobotics, or super-resolution imaging. However, significant concerns have been raised regarding the low bio-degradability and potential toxic effects of inorganic particles. Bio-based, biodegradable nano- and microcapsules consisting of an aqueous core with clinically-approved indocyanine green (ICG) and a cross-linked casein shell obtained in an inverse emulsion approach are introduced. The feasibility to provide contrast-enhanced in vivo OA imaging with nanocapsules as well as localizing and tracking individual larger microcapsules of 4-5 µm is demonstrated. All components of the developed capsules are safe for human use and the inverse emulsion approach is known to be compatible with a variety of shell materials and payloads. Hence, the enhanced OA imaging performance can be exploited in multiple biomedical studies and can open a route to clinical approval of agents detectable at a single-particle level.


Asunto(s)
Verde de Indocianina , Nanocápsulas , Humanos , Cápsulas , Emulsiones , Verde de Indocianina/farmacología
12.
Small ; 19(25): e2206454, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929281

RESUMEN

Typically, 2D nanosheets have a homogeneous surface, making them a major challenge to structure. This study proposes a novel concept of 2D organic nanosheets with a heterogeneously functionalized surface. This work achieves this by consecutively crystallizing two precisely synthesized polymers with different functional groups in the polymer backbone in a two-step process. First, the core platelet is formed and then the second polymer is crystallized around it. As a result, the central area of the platelets has a different surface functionality than the periphery. This concept offers two advantages: the resulting polymeric 2D platelets are stable in dispersion, which simplifies further processing and makes both crystal surfaces accessible for subsequent functionalization. Additionally, a wide variety of polymers can be used, making the process and the choice of surface functionalization very flexible.

13.
Macromol Rapid Commun ; 44(16): e2200611, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36098551

RESUMEN

Multifunctional nanocarriers enhance the treatment efficacy for modern therapeutics and have gained increasing importance in biomedical research. Codelivery of multiple bioactive molecules enables synergistic therapies. Coencapsulation of cargo molecules into one nanocarrier system is challenging due to different physicochemical properties of the cargo molecules. Additionally, coencapsulation of multiple molecules simultaneously shall proceed with high control and efficiency. Orthogonal approaches for the preparation of nanocarriers are essential to encapsulate sensitive bioactive molecules while preserving their bioactivity. Preparation of nanocarriers by physical processes (i.e., self-assembly or coacervation) and chemical reactions (i.e., click reactions, polymerizations, etc.) are considered as orthogonal methods to most cargo molecules. This review shall act as a guideline to allow the reader to select a suitable preparation protocol for a desired nanocarrier system. This article helps to select for combinations of cargo molecules (hydrophilic-hydrophobic, small-macro, organic-inorganic) with nanocarrier material and synthesis protocols. The focus of this article lies on the coencapsulation of multiple cargo molecules into biocompatible and biodegradable nanocarriers prepared by orthogonal strategies. With this toolbox, the selection of a preparation method for a known set of cargo molecules to prepare the desired biodegradable and loaded nanocarrier shall be provided.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Nanopartículas/química , Interacciones Hidrofóbicas e Hidrofílicas
14.
Angew Chem Int Ed Engl ; 62(11): e202216966, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36517933

RESUMEN

Living organisms compartmentalize their catalytic reactions in membranes for increased efficiency and selectivity. To mimic the organelles of eukaryotic cells, we develop a mild approach for in situ encapsulating enzymes in aqueous-core silica nanocapsules. In order to confine the sol-gel reaction at the water/oil interface of miniemulsion, we introduce an aminosilane to the silica precursors, which serves as both catalyst and an amphiphilic anchor that electrostatically assembles with negatively charged hydrolyzed alkoxysilanes at the interface. The semi-permeable shell protects enzymes from proteolytic attack, and allows the transport of reactants and products. The enzyme-carrying nanocapsules, as synthetic nano-organelles, are able to perform cascade reactions when enveloped in a polymer vesicle, mimicking the hierarchically compartmentalized reactions in eukaryotic cells. This in situ encapsulation approach provides a versatile platform for the delivery of biomacromolecules.


Asunto(s)
Células Artificiales , Nanocápsulas , Agua , Catálisis , Dióxido de Silicio
15.
Waste Manag ; 154: 36-48, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36209717

RESUMEN

The aerobic composting of biodegradable plastics can be a promising solution to the growing issue of waste accumulation. Therefore, this article offers a review of papers investigating the biodegradability of polyesters (PLA, PHB, PBS and PCL) in home- and industrial composting. Not only the thermal and biodegradation properties are discussed, but also a comparison is made between the different polyesters under the same composting conditions. From this review, it becomes clear that composting shows promise for polyester waste management. However, although several methods for assessing the composting properties of polyester have been developed, the fact that they rarely follow the same standards does not allow for a comparative analysis that would clearly define composting as the most viable solution.

17.
Chemosphere ; 308(Pt 2): 136381, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36088968

RESUMEN

Marine plastic pollution caused by non-biodegradable polymers is a major worldwide concern. So-called "biodegradable" polymers should reduce plastic pollution in the environment by the safeguard of biodegradation. However, many polyesters degrade very slowly in seawater. We therefore designed a systematic library of "breaking points" that are installed into a polylactide backbone and simulated their degradation mechanisms, including internal and external SN2 mechanisms, Addition-Elimination (AE) mechanisms, and RNA-inspired mechanisms. The breaking points are composed of phosphoesters with pendant nucleophiles directly at the P-atom, or structurally similar silicones, or side-chain functional polyesters. All P-containing breaking points react via the RNA-inspired mechanism, while Si-containing linkers undergo decomposition via the A-E mechanism. For C-containing linkers, only when a long pendant chain (4 carbon atoms) is present can the reaction proceed via the RNA-inspired mechanism. In cases of shorter pendants, the Addition-Elimination (AE) mechanism is energetically favorable. We believe that these calculations will pave the way for the synthesis of exceptionally seawater-degradable polyesters in the future that can act as a safeguard to prevent microplastic formation after eventual littering.


Asunto(s)
Plásticos , Polímeros , Carbono , Microplásticos , Poliésteres , Agua de Mar , Siliconas
18.
Int J Biol Macromol ; 220: 472-481, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987356

RESUMEN

Lignin sulfonate (LS), a waste material from the paper pulping, was modified with benzoic anhydride to obtain benzoylated lignin sulfonates of adjustable hydrophilicity (BLS). When BLS was combined with difenoconazole (Di), a broad-spectrum fungicide, lignin-based, non-crosslinked nanoparticles were obtained either by solvent exchange or solvent evaporation. When a mass ratio of 1:5 LS: benzoic anhydride was used, the Di release from Di@BLS5 after 1248 h was ca. 74 %, while a commercial difenoconazole microemulsion (Di ME) reached 100 % already after 96 h, proving the sustained release from the lignin nanocarriers. The formulation of Di in lignin-based nanocarriers also improved the UV stability and the foliar retention of Di compared to the commercial formulation of the fungicide. Bioactivity assay showed that Di@BLS5 exhibited high activities and duration against strawberry anthracnose (Colletotrichum gloeosporioides). Overall, the construction of fungicide delivery nano-platform using BLS via a simple non-crosslinked approach is a novel and promising way to develop new formulations for nanopesticide and the development of sustainable agriculture.


Asunto(s)
Fungicidas Industriales , Plaguicidas , Agricultura , Benzoatos , Preparaciones de Acción Retardada , Lignina , Solventes
19.
Nanoscale Horiz ; 7(8): 908-915, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35708163

RESUMEN

Encapsulation of multiple adjuvants along with antigens into nanocarriers allows a co-delivery to antigen-presenting cells for the synergistic induction of robust immune responses. However, loading cargoes of different molar masses, polarities, and solubilities in high efficiencies remains a challenge. Therefore, we developed a strategy to encapsulate a triple combination of the so-called adjuvants, i.e. with Resiquimod (R848), muramyl dipeptide (MDP) and polyinosinic-polycytidylic acid (Poly(I : C)) into human serum albumin (HSA) nanocarriers. The loading is conducted in situ while the nanocarrier is formed by an orthogonal and metal-free click reaction at the interface of an inverse miniemulsion. By this unique approach, high encapsulation efficiency without harming the cargo during the nanocarrier formation process and regardless of their physical properties is achieved, thus keeping their bioactivity. Furthermore, we demonstrated high control over the encapsulation efficiency and varying the amount of each cargo did not influence the efficiency of multicomponent encapsulation. Azide-modified HSA was crosslinked with hexanediol dipropiolate (HDDP) at the interface of a water-in-oil miniemulsion. Varying the crosslinker amount allowed us to tailor the density and degradation rates of the protein shell. Additional installation of disulfide bonds into the crosslinker created redox-responsive nanocarriers, which degraded both by protease and under reducing conditions with dithiothreitol. The prepared HSA nanocarriers were efficiently taken up by dendritic cells and exhibited an additive cell activation and maturation, exceeding the nanocarriers loaded with only a single drug. This general protocol allows the orthogonal and metal-free encapsulation of various drugs or adjuvants at defined concentrations into the protein nanocarriers.


Asunto(s)
Alquinos , Azidas , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Humanos , Inmunoterapia , Proteínas
20.
Chirality ; 34(9): 1257-1265, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35713334

RESUMEN

Protein-polymer conjugates are a blooming class of hybrid systems with high biomedical potential. Despite a plethora of papers on their biomedical properties, the physical-chemical characterization of many protein-polymer conjugates is missing. Here, we evaluated the thermal stability of a set of fully-degradable polyphosphoester-protein conjugates by variable temperature circular dichroism, a common but powerful technique. We extensively describe their thermodynamic stability in different environments (in physiological buffer or in presence of chemical denaturants, e.g., acid or urea), highlighting the protective role of the polymer in preserving the protein from denaturation. For the first time, we propose a simple but effective protocol to achieve useful information on these systems in vitro, useful to screen new samples in their early stages.


Asunto(s)
Mioglobina , Polímeros , Dicroismo Circular , Polímeros/química , Desnaturalización Proteica , Estereoisomerismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA