Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2013): 20232274, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38113935

RESUMEN

The waggle dances of honeybees are a strikingly complex form of animal communication that underlie the collective foraging behaviour of colonies. The mechanisms by which bees assess the locations of forage sites that they have visited for representation on the dancefloor are now well-understood, but few studies have considered the remarkable backward translation of such information into flight vectors by dance-followers. Here, we explore whether the gene expression patterns that are induced through individual learning about foraging locations are mirrored when bees learn about those same locations from their nest-mates. We first confirmed that the mushroom bodies of honeybee dancers show a specific transcriptomic response to learning about distance, and then showed that approximately 5% of those genes were also differentially expressed by bees that follow dances for the same foraging sites, but had never visited them. A subset of these genes were also differentially expressed when we manipulated distance perception through an optic flow paradigm, and responses to learning about target direction were also in part mirrored in the brains of dance followers. Our findings show a molecular footprint of the transfer of learnt information from one animal to another through this extraordinary communication system, highlighting the dynamic role of the genome in mediating even very short-term behavioural changes.


Asunto(s)
Comunicación Animal , Encéfalo , Abejas/genética , Animales , Aprendizaje , Cuerpos Pedunculados , Perfilación de la Expresión Génica
2.
Mol Ecol ; 32(5): 1034-1044, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36478483

RESUMEN

Global losses of insects jeopardize ecosystem stability and crop pollination. Robust evidence indicates that insecticides have contributed to these losses. Notably, insecticides targeting nicotinic acetylcholine receptors (nAChRs) have neurotoxic effects on beneficial insects. Because each nAChR consists of five subunits, the alternative arrangements of subunits could create a multitude of receptors differing in structure and function. Therefore, understanding whether the use of subunits varies is essential for evaluating and predicting the effects of insecticides targeting such receptors. To better understand how the use and composition of nAChRs differ within and between insect pollinators, we analysed RNA-seq gene expression data from tissues and castes of Apis mellifera honey bees and life stages and castes of the Bombus terrestris bumble bees. We reveal that all analysed tissues express nAChRs and that relative expression levels of nAChR subunits vary widely across almost all comparisons. Our work thus shows fine-tuned spatial and temporal expression of nAChRs. Given that coexpression of subunits underpins the compositional diversity of functional receptors and that the affinities of insecticides depend on nAChR composition, our findings provide a likely mechanism for the various damaging effects of nAChR-targeting insecticides on insects. Furthermore, our results indicate that the appraisal of insecticide risks should carefully consider variation in molecular targets.


Asunto(s)
Insecticidas , Receptores Nicotínicos , Abejas/genética , Animales , Insecticidas/toxicidad , Ecosistema , Insectos , Receptores Nicotínicos/genética , Proteínas Portadoras
3.
ISME J ; 16(9): 2114-2122, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35701539

RESUMEN

Ants are among the most successful organisms on Earth. It has been suggested that forming symbioses with nutrient-supplementing microbes may have contributed to their success, by allowing ants to invade otherwise inaccessible niches. However, it is unclear whether ants have evolved symbioses repeatedly to overcome the same nutrient limitations. Here, we address this question by comparing the independently evolved symbioses in Camponotus, Plagiolepis, Formica and Cardiocondyla ants. Our analysis reveals the only metabolic function consistently retained in all of the symbiont genomes is the capacity to synthesise tyrosine. We also show that in certain multi-queen lineages that have co-diversified with their symbiont for millions of years, only a fraction of queens carry the symbiont, suggesting ants differ in their colony-level reliance on symbiont-derived resources. Our results imply that symbioses can arise to solve common problems, but hosts may differ in their dependence on symbionts, highlighting the evolutionary forces influencing the persistence of long-term endosymbiotic mutualisms.


Asunto(s)
Hormigas , Animales , Filogenia , Simbiosis
4.
Genome Biol Evol ; 14(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35510983

RESUMEN

Ants, bees, wasps, bark beetles, and other species have haploid males and diploid females. Although such haplodiploid species play key ecological roles and are threatened by environmental changes, no general framework exists for simulating their genetic evolution. Here, we use the SLiM simulation environment to build a novel model for individual-based forward simulation of genetic evolution in haplodiploids. We compare the fates of adaptive and deleterious mutations and find that selection on recessive mutations is more effective in haplodiploids than in diploids. Our open-source model will foster an understanding of the evolution of sociality and how ecologically important haplodiploid species may respond to changing environments.


Asunto(s)
Diploidia , Avispas , Animales , Abejas/genética , Evolución Biológica , Evolución Molecular , Femenino , Genoma , Haploidia , Masculino , Avispas/genética
5.
Nat Commun ; 13(1): 1180, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277489

RESUMEN

Introgression has been proposed as an essential source of adaptive genetic variation. However, a key barrier to adaptive introgression is that recombination can break down combinations of alleles that underpin many traits. This barrier might be overcome in supergene regions, where suppressed recombination leads to joint inheritance across many loci. Here, we study the evolution of a large supergene region that determines a major social and ecological trait in Solenopsis fire ants: whether colonies have one queen or multiple queens. Using coalescent-based phylogenies built from the genomes of 365 haploid fire ant males, we show that the supergene variant responsible for multiple-queen colonies evolved in one species and repeatedly spread to other species through introgressive hybridization. This finding highlights how supergene architecture can enable a complex adaptive phenotype to recurrently permeate species boundaries.


Asunto(s)
Hormigas , Conducta Social , Alelos , Animales , Hormigas/genética , Masculino , Filogenia
6.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35134226

RESUMEN

Environmental changes threaten insect pollinators, creating risks for agriculture and ecosystem stability. Despite their importance, we know little about how wild insects respond to environmental pressures. To understand the genomic bases of adaptation in an ecologically important pollinator, we analyzed genomes of Bombus terrestris bumblebees collected across Great Britain. We reveal extensive genetic diversity within this population, and strong signatures of recent adaptation throughout the genome affecting key processes including neurobiology and wing development. We also discover unusual features of the genome, including a region containing 53 genes that lacks genetic diversity in many bee species, and a horizontal gene transfer from a Wolbachia bacteria. Overall, the genetic diversity we observe and how it is distributed throughout the genome and the population should support the resilience of this important pollinator species to ongoing and future selective pressures. Applying our approach to more species should help understand how they can differ in their adaptive potential, and to develop conservation strategies for those most at risk.


Asunto(s)
Ecosistema , Genómica , Animales , Abejas/genética
7.
Genes Brain Behav ; 21(3): e12758, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34101985

RESUMEN

Social life and isolation pose a complex suite of challenges to organisms prompting significant changes in neural state. However, plasticity in how brains respond to social challenges remains largely unexplored. The fire ants Solenopsis invicta provide an ideal scenario for examining this. Fire ant queens may found colonies individually or in groups of up to 30 queens, depending on key factors such as density of newly mated queens and availability of nesting sites. We artificially manipulated availability of nesting sites to test how the brain responds to social versus solitary colony founding at two key timepoints (early vs. late colony founding) and to group size (large vs. small groups). We adopted a powerful neurogenomic approach to identify even subtle differences of gene expression between treatment groups, and we built a global gene co-expression network of the fire ant brain to identify gene modules specifically associated with the different components of the social environment. The difference between group and single founding queens involves only one gene when founding behavior is still plastic and queens can switch from one modality to another, while hundreds of genes are involved later in the process, when behaviors have lost the initial plasticity and are more canalized. Furthermore, we find that large groups are associated with greater changes in gene expression than small groups, showing that even potentially subtle differences in the social environment can be linked to different neurogenomic states.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Encéfalo , Expresión Génica , Reproducción , Conducta Social , Aislamiento Social
8.
Mol Ecol ; 31(3): 859-865, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800339

RESUMEN

The benefits of cooperative living for foraging, nesting, defence and buffering environmental challenges lead animals with the most highly social lifestyles to dominate many ecosystems. However, living in larger, more highly connected groups should also increase the risks of pathogen exposure and transmission. While over long timescales selective responses could buffer the impacts of potential higher pathogen prevalence, similar processes are unlikely over short timescales. The red fire ant Solenopsis invicta is ideal for measuring the effects of group size on pathogen prevalence because two types of society coexist in this species: smaller single-nest single-queen colonies that are highly aggressive to their neighbours and larger multiple-queen colonies that exchange resources with neighbouring nests. We compare the presence of viruses between these two colony types using metagenomic sequence classification of RNA-sequencing reads. We find that queens from multiple-queen colonies have 8.3-times higher viral load and 1.5-times higher viral diversity than queens from single-queen colonies. This finding characterizes a rarely considered cost of transitions to more highly social living. Furthermore, our results show that highly social invertebrates can harbour many viruses.


Asunto(s)
Hormigas , Virus , Animales , Ecosistema , Prevalencia , Virus/genética
9.
Fac Rev ; 10: 75, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35146495

RESUMEN

Supergenes are regions of suppressed recombination that may span hundreds of genes and can control variation in key ecological phenotypes. Since genetic analysis is made impossible by the absence of recombination between genes, it has been difficult to establish how individual genes within these regions contribute to supergene-controlled phenotypes. The white-throated sparrow is a classic example in which a supergene controls behavioral differences as well as distinct coloration that determines mate choice. A landmark study now demonstrates that differences between supergene variants in the promoter sequences of a hormone receptor gene change its expression and control changes in behavior. To unambiguously establish the link between genotype and phenotype, the authors used antisense oligonucleotides to alter the level of gene expression in a focal brain region targeted through a cannula. The study showcases a powerful approach to the functional genomic manipulation of a wild vertebrate species.

11.
Curr Biol ; 30(22): R1385-R1387, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33202242

RESUMEN

A symbiotic partnership with Blochmannia bacteria is thought to underpin the ecological success of carpenter ants. Disentangling the molecular interactions between the mutualistic partners supports an old hypothesis that many other ants also had similar symbioses and lost them.


Asunto(s)
Hormigas , Animales , Bacterias , Evolución Biológica , Enterobacteriaceae , Simbiosis
12.
Elife ; 92020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32773032

RESUMEN

Supergene regions maintain alleles of multiple genes in tight linkage through suppressed recombination. Despite their importance in determining complex phenotypes, our empirical understanding of early supergene evolution is limited. Here we focus on the young 'social' supergene of fire ants, a powerful system for disentangling the effects of evolutionary antagonism and suppressed recombination. We hypothesize that gene degeneration and social antagonism shaped the evolution of the fire ant supergene, resulting in distinct patterns of gene expression. We test these ideas by identifying allelic differences between supergene variants, characterizing allelic expression across populations, castes and body parts, and contrasting allelic expression biases with differences in expression between social forms. We find strong signatures of gene degeneration and gene-specific dosage compensation. On this background, a small portion of the genes has the signature of adaptive responses to evolutionary antagonism between social forms.


Red fire ants (Solenopsis invicta) are native to South America, but the species has spread to North America, Australia and New Zealand where it can be an invasive pest. A reason for this species' invasiveness types of colonies : one with a single egg-laying queen and another with several queens. However, it is not possible to simply add more queens to a colony with one queen. Instead, the number of queens in a colony is controlled genetically, by a chromosome known as the 'social chromosome'. Like many other animals, red fire ants are diploid: their cells have two copies of each chromosome, which can carry two different versions of each gene. The social chromosome is no different, and it comes in two variants, SB and Sb. Each ant can therefore have either two SB chromosomes, leading to a colony with a single queen; or one SB chromosome and one Sb chromosome, leading to a colony with multiple queens. Ants with two copies of the Sb variant die when they are young, so the Sb version is inherited in a similar way to how the Y chromosome is passed on in humans. However, the social chromosome in red fire ants appeared less than one million years ago, making it much younger than the human Y chromosome, which is 180 million years old. This makes the social chromosome a good candidate for examining the early evolution of special chromosome variants that are only inherited. How differences between the SB and the Sb chromosomes are evolving is an open question, however. Perhaps each version of the social chromosome has been optimised through natural selection to one colony type. Another suggestion is that the Sb chromosome has degenerated over time because its genes cannot be 'reshuffled' as they would be on normal chromosomes. Martinez-Ruiz et al. compared genetic variants on the SB and Sb chromosomes, along with their expression in different types of ant colonies. The analysis showed that the Sb variant is in fact breaking down because of the lack of gene shuffling. This loss is compensated by intact copies of the same genes found on the SB variant, which explains why ants with the Sb variant can only survive if they also carry the SB version. Only a handful of genes on the social chromosomes appear to have been optimised by natural selection. Therefore Martinez-Ruiz et al. concluded the differences between the two chromosomes that lead to different colony types are collateral effects of Sb's inability to reshuffle its genes. This work reveals how a special chromosome similar to the Y chromosome in humans evolved. It also shows how multiple complex evolutionary forces can shape a species' genetic makeup and social forms.


Asunto(s)
Hormigas , Cromosomas/genética , Conducta Social , Alelos , Animales , Hormigas/genética , Conducta Animal , Evolución Biológica , Evolución Molecular , Expresión Génica , Genómica , Selección Genética/genética
13.
Genome Biol Evol ; 12(8): 1355-1366, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32589737

RESUMEN

Taxonomically restricted genes (TRGs) are genes that are present only in one clade. Protein-coding TRGs may evolve de novo from previously noncoding sequences: functional ncRNA, introns, or alternative reading frames of older protein-coding genes, or intergenic sequences. A major challenge in studying de novo genes is the need to avoid both false-positives (nonfunctional open reading frames and/or functional genes that did not arise de novo) and false-negatives. Here, we search conservatively for high-confidence TRGs as the most promising candidates for experimental studies, ensuring functionality through conservation across at least two species, and ensuring de novo status through examination of homologous noncoding sequences. Our pipeline also avoids ascertainment biases associated with preconceptions of how de novo genes are born. We identify one TRG family that evolved de novo in the Drosophila melanogaster subgroup. This TRG family contains single-copy genes in Drosophila simulans and Drosophila sechellia. It originated in an intron of a well-established gene, sharing that intron with another well-established gene upstream. These TRGs contain an intron that predates their open reading frame. These genes have not been previously reported as de novo originated, and to our knowledge, they are the best Drosophila candidates identified so far for experimental studies aimed at elucidating the properties of de novo genes.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Familia de Multigenes , Animales , Sistemas de Lectura Abierta , Especificidad de la Especie
14.
Trends Ecol Evol ; 35(5): 380-383, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32294420

RESUMEN

Pollinators have been declining worldwide, and pesticides have contributed to these declines. High-resolution approaches from molecular medicine can provide unparalleled insight into organismal physiology and health. Applying these approaches to pollinators can significantly improve the efficiency and sensitivity of pesticide research and evaluation, and thus the sustainability of modern agriculture.


Asunto(s)
Plaguicidas , Agricultura , Medicina Molecular
15.
Methods Mol Biol ; 1962: C1, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31667803

RESUMEN

This book was published with References 17 and 18 in the incorrect order.

16.
Mol Biol Evol ; 36(12): 2922-2924, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411700

RESUMEN

Comparing newly obtained and previously known nucleotide and amino-acid sequences underpins modern biological research. BLAST is a well-established tool for such comparisons but is challenging to use on new data sets. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver, a tool for running BLAST and visually inspecting BLAST results for biological interpretation. Sequenceserver uses simple algorithms to prevent potential analysis errors and provides flexible text-based and visual outputs to support researcher productivity. Our software can be rapidly installed for use by individuals or on shared servers.


Asunto(s)
Biología Computacional/métodos , Técnicas Genéticas , Programas Informáticos
18.
Methods Mol Biol ; 1962: 257-267, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31020566

RESUMEN

GeneValidator is a tool for determining whether the characteristics of newly predicted protein-coding genes are consistent with those of similar sequences in public databases. For this, it runs up to seven comparisons per gene. Results are shown in an HTML report containing summary statistics and graphical visualizations that aim to be useful for curators. Results are also presented in CSV and JSON formats for automated follow-up analysis.Here, we describe common usage scenarios of GeneValidator that use the JSON output results together with standard UNIX tools. We demonstrate how GeneValidator's textual output can be used to filter and subset large gene sets effectively. First, we explain how low-scoring gene models can be identified and extracted for manual curation-for example, as input for genome browsers or gene annotation tools. Second, we show how GeneValidator's HTML report can be regenerated from a filtered subset of GeneValidator's JSON output. Subsequently, we demonstrate how GeneValidator's GUI can be used to complement manual curation efforts. Additionally, we explain how GeneValidator can be used to merge information from multiple annotations by automatically selecting the higher-scoring gene model at each common gene locus. Finally, we show how GeneValidator analyses can be optimized when using large BLAST databases.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Proteínas/genética , Programas Informáticos , Curaduría de Datos , Anotación de Secuencia Molecular , Navegador Web , Flujo de Trabajo
19.
BMC Genomics ; 20(1): 301, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30991952

RESUMEN

BACKGROUND: Adapting to changes in the environment is the foundation of species survival, and is usually thought to be a gradual process. However, transposable elements (TEs), epigenetic modifications, and/or genetic material acquired from other organisms by means of horizontal gene transfer (HGTs), can also lead to novel adaptive traits. Social insects form dense societies, which attract and maintain extra- and intracellular accessory inhabitants, which may facilitate gene transfer between species. The wood ant Formica exsecta (Formicidae; Hymenoptera), is a common ant species throughout the Palearctic region. The species is a well-established model for studies of ecological characteristics and evolutionary conflict. RESULTS: In this study, we sequenced and assembled draft genomes for F. exsecta and its endosymbiont Wolbachia. The F. exsecta draft genome is 277.7 Mb long; we identify 13,767 protein coding genes, for which we provide gene ontology and protein domain annotations. This is also the first report of a Wolbachia genome from ants, and provides insights into the phylogenetic position of this endosymbiont. We also identified multiple horizontal gene transfer events (HGTs) from Wolbachia to F. exsecta. Some of these HGTs have also occurred in parallel in multiple other insect genomes, highlighting the extent of HGTs in eukaryotes. CONCLUSION: We present the first draft genome of ant F. exsecta, and its endosymbiont Wolbachia (wFex), and show considerable rates of gene transfer from the symbiont to the host. We expect that especially the F. exsecta genome will be valuable resource in further exploration of the molecular basis of the evolution of social organization.


Asunto(s)
Hormigas/genética , Hormigas/microbiología , Transferencia de Gen Horizontal , Genómica , Simbiosis/genética , Wolbachia/genética , Wolbachia/fisiología , Animales , Evolución Molecular , Genes de Insecto/genética
20.
Mol Ecol ; 28(8): 1964-1974, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30843300

RESUMEN

Social bees are important insect pollinators of wildflowers and agricultural crops, making their reported declines a global concern. A major factor implicated in these declines is the widespread use of neonicotinoid pesticides. Indeed, recent research has demonstrated that exposure to low doses of these neurotoxic pesticides impairs bee behaviours important for colony function and survival. However, our understanding of the molecular-genetic pathways that lead to such effects is limited, as is our knowledge of how effects may differ between colony members. To understand what genes and pathways are affected by exposure of bumblebee workers and queens to neonicotinoid pesticides, we implemented a transcriptome-wide gene expression study. We chronically exposed Bombus terrestriscolonies to either clothianidin or imidacloprid at field-realistic concentrations while controlling for factors including colony social environment and worker age. We reveal that genes involved in important biological processes including mitochondrial function are differentially expressed in response to neonicotinoid exposure. Additionally, clothianidin exposure had stronger effects on gene expression amplitude and alternative splicing than imidacloprid. Finally, exposure affected workers more strongly than queens. Our work demonstrates how RNA-Seq transcriptome profiling can provide detailed novel insight on the mechanisms mediating pesticide toxicity to a key insect pollinator.


Asunto(s)
Abejas/genética , Conducta Animal/efectos de los fármacos , Neonicotinoides/efectos adversos , Plaguicidas/efectos adversos , Animales , Abejas/efectos de los fármacos , Conducta Animal/fisiología , Productos Agrícolas , Regulación de la Expresión Génica/efectos de los fármacos , Polinización/efectos de los fármacos , Polinización/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...