Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Comput Methods Programs Biomed ; 242: 107811, 2023 Dec.
Article En | MEDLINE | ID: mdl-37742486

The confident detection of metastatic bone disease is essential to improve patients' comfort and increase life expectancy. Multi-parametric magnetic resonance imaging (MRI) has been successfully used for monitoring of metastatic bone disease, allowing for comprehensive and holistic evaluation of the total tumour volume and treatment response assessment. The major challenges of radiological reading of whole-body MRI come from the amount of data to be reviewed and the scattered distribution of metastases, often of complex shapes. This makes bone lesion detection and quantification demanding for a radiologist and prone to error. Additionally, whole-body MRI are often corrupted with multiple spatial and intensity distortions, which further degrade the performance of image reading and image processing algorithms. In this work we propose a fully automated computer-aided diagnosis system for the detection and segmentation of metastatic bone disease using whole-body multi-parametric MRI. The system consists of an extensive image preprocessing pipeline aiming at enhancing the image quality, followed by a deep learning framework for detection and segmentation of metastatic bone disease. The system outperformed state-of-the-art methodologies, achieving a detection sensitivity of 63% with a mean of 6.44 false positives per image, and an average lesion Dice coefficient of 0.53. A provided ablation study performed to investigate the relative importance of image preprocessing shows that introduction of region of interest mask and spatial registration have a significant impact on detection and segmentation performance in whole-body MRI. The proposed computer-aided diagnosis system allows for automatic quantification of disease infiltration and could provide a valuable tool during radiological examination of whole-body MRI.


Bone Diseases , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Diagnosis, Computer-Assisted , Algorithms , Image Processing, Computer-Assisted/methods , Computers
2.
Eur Radiol ; 33(1): 244-257, 2023 Jan.
Article En | MEDLINE | ID: mdl-35925384

OBJECTIVES: To compare the diagnostic accuracy of a single T2 Dixon sequence to the combination T1+STIR as anatomical sequences used for detecting tumoral bone marrow lesions in whole-body MRI (WB-MRI) examinations. METHODS: Between January 2019 and January 2020, seventy-two consecutive patients (55 men, 17 women, median age = 66 years) with solid (prostate, breast, neuroendocrine) cancers at high risk of metastasis or proven multiple myeloma (MM) prospectively underwent a WB-MRI examination including coronal T1, STIR, T2 Dixon and axial diffusion-weighted imaging sequences. Two radiologists independently assessed the combination of T1+STIR sequences and the fat+water reconstructions from the T2 Dixon sequence. The reference standard was established by consensus reading of WB-MRI and concurrent imaging available at baseline and at 6 months. Repeatability and reproducibility of MRI scores (presence and semi-quantitative count of lesions), image quality (SNR: signal-to-noise, CNR: contrast-to-noise, CRR: contrast-to-reference ratios), and diagnostic characteristics (Se: sensitivity, Sp: specificity, Acc: accuracy) were assessed per-skeletal region and per-patient. RESULTS: Repeatability and reproducibility were at least good regardless of the score, region, and protocol (0.67 ≤ AC1 ≤ 0.98). CRR was higher on T2 Dixon fat compared to T1 (p < 0.0001) and on T2 Dixon water compared to STIR (p = 0.0128). In the per-patient analysis, Acc of the T2 Dixon fat+water was higher than that of T1+STIR for the senior reader (Acc = +0.027 [+0.025; +0.029], p < 0.0001) and lower for the junior reader (Acc = -0.029 [-0.031; -0.027], p < 0.0001). CONCLUSIONS: A single T2 Dixon sequence with fat+water reconstructions offers similar reproducibility and diagnostic accuracy as the recommended combination of T1+STIR sequences and can be used for skeletal screening in oncology, allowing significant time-saving. KEY POINTS: • Replacement of the standard anatomic T1 + STIR WB-MRI protocol by a single T2 Dixon sequence drastically shortens the examination time without loss of diagnostic accuracy. • A protocol based on fat + water reconstructions from a single T2 Dixon sequence offers similar inter-reader agreement and a higher contrast-to-reference ratio for detecting lesions compared to the standard T1 + STIR protocol. • Differences in the accuracy between the two protocols are marginal (+ 3% in favor of the T2 Dixon with the senior reader; -3% against the T2 Dixon with the junior reader).


Multiple Myeloma , Male , Humans , Female , Aged , Multiple Myeloma/diagnostic imaging , Reproducibility of Results , Whole Body Imaging/methods , Magnetic Resonance Imaging/methods , Water
3.
Skeletal Radiol ; 51(1): 59-80, 2022 Jan.
Article En | MEDLINE | ID: mdl-34363522

Bone imaging has been intimately associated with the diagnosis and staging of multiple myeloma (MM) for more than 5 decades, as the presence of bone lesions indicates advanced disease and dictates treatment initiation. The methods used have been evolving, and the historical radiographic skeletal survey has been replaced by whole body CT, whole body MRI (WB-MRI) and [18F]FDG-PET/CT for the detection of bone marrow lesions and less frequent extramedullary plasmacytomas.Beyond diagnosis, imaging methods are expected to provide the clinician with evaluation of the response to treatment. Imaging techniques are consistently challenged as treatments become more and more efficient, inducing profound response, with more subtle residual disease. WB-MRI and FDG-PET/CT are the methods of choice to address these challenges, being able to assess disease progression or response and to detect "minimal" residual disease, providing key prognostic information and guiding necessary change of treatment.This paper provides an up-to-date overview of the WB-MRI and PET/CT techniques, their observations in responsive and progressive disease and their role and limitations in capturing minimal residual disease. It reviews trials assessing these techniques for response evaluation, points out the limited comparisons between both methods and highlights their complementarity with most recent molecular methods (next-generation flow cytometry, next-generation sequencing) to detect minimal residual disease. It underlines the important role of PET/MRI technology as a research tool to compare the effectiveness and complementarity of both methods to address the key clinical questions.


Multiple Myeloma , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Imaging , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/therapy , Neoplasm, Residual/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals , Whole Body Imaging
4.
J Magn Reson Imaging ; 55(3): 653-680, 2022 03.
Article En | MEDLINE | ID: mdl-33382151

Over the past decade, updated definitions for the different stages of prostate cancer and risk for distant disease, along with the advent of new therapies, have remarkably changed the management of patients. The two expectations from imaging are accurate staging and appropriate assessment of disease response to therapies. Modern, next-generation imaging (NGI) modalities, including whole-body magnetic resonance imaging (WB-MRI) and nuclear medicine (most often prostate-specific membrane antigen [PSMA] positron emission tomography [PET]/computed tomography [CT]) bring added value to these imaging tasks. WB-MRI has proven its superiority over bone scintigraphy (BS) and CT for the detection of distant metastasis, also providing reliable evaluations of disease response to treatment. Comparison of the effectiveness of WB-MRI and molecular nuclear imaging techniques with regard to indications and the definition of their respective/complementary roles in clinical practice is ongoing. This paper illustrates the evolution of WB-MRI imaging protocols, defines the current state-of-the art, and highlights the latest developments and future challenges. The paper presents and discusses WB-MRI indications in the care pathway of men with prostate cancer in specific key situations: response assessment of metastatic disease, "all in one" cancer staging, and oligometastatic disease.


Prostatic Neoplasms , Whole Body Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Neoplasm Staging , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Tomography, X-Ray Computed , Whole Body Imaging/methods
...