Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circulation ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881449

RESUMEN

BACKGROUND: HIF (hypoxia inducible factor) regulates many aspects of cardiac function. We and others previously showed that chronic HIF activation in the heart in mouse models phenocopies multiple features of ischemic cardiomyopathy in humans, including mitochondrial loss, lipid accumulation, and systolic cardiac dysfunction. In some settings, HIF also causes the loss of peroxisomes. How, mechanistically, HIF promotes cardiac dysfunction is an open question. METHODS: We used mice lacking cardiac pVHL (von Hippel-Lindau protein) to investigate how chronic HIF activation causes multiple features of ischemic cardiomyopathy, such as autophagy induction and lipid accumulation. We performed immunoblot assays, RNA sequencing, mitochondrial and peroxisomal autophagy flux measurements, and live cell imaging on hearts and isolated cardiomyocytes. We used CRISPR-Cas9 gene editing in mice to validate a novel mediator of cardiac dysfunction in the setting of chronic HIF activation. RESULTS: We identify a previously unknown pathway by which cardiac HIF activation promotes the loss of mitochondria and peroxisomes. We found that DEPP1 (decidual protein induced by progesterone 1) is induced under hypoxia in a HIF-dependent manner and localizes inside mitochondria. DEPP1 is both necessary and sufficient for hypoxia-induced autophagy and triglyceride accumulation in cardiomyocytes ex vivo. DEPP1 loss increases cardiomyocyte survival in the setting of chronic HIF activation ex vivo, and whole-body Depp1 loss decreases cardiac dysfunction in hearts with chronic HIF activation caused by VHL loss in vivo. CONCLUSIONS: Our findings identify DEPP1 as a key component in the cardiac remodeling that occurs with chronic ischemia.

2.
Science ; 377(6606): 621-629, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926043

RESUMEN

Kynurenic acid (KynA) is tissue protective in cardiac, cerebral, renal, and retinal ischemia models, but the mechanism is unknown. KynA can bind to multiple receptors, including the aryl hydrocarbon receptor, the a7 nicotinic acetylcholine receptor (a7nAChR), multiple ionotropic glutamate receptors, and the orphan G protein-coupled receptor GPR35. Here, we show that GPR35 activation was necessary and sufficient for ischemic protection by KynA. When bound by KynA, GPR35 activated Gi- and G12/13-coupled signaling and trafficked to the outer mitochondria membrane, where it bound, apparantly indirectly, to ATP synthase inhibitory factor subunit 1 (ATPIF1). Activated GPR35, in an ATPIF1-dependent and pertussis toxin-sensitive manner, induced ATP synthase dimerization, which prevented ATP loss upon ischemia. These findings provide a rationale for the development of specific GPR35 agonists for the treatment of ischemic diseases.


Asunto(s)
Ácido Quinurénico , Mitocondrias Cardíacas , Isquemia Miocárdica , Receptores Acoplados a Proteínas G , Adenosina Trifosfato/metabolismo , Animales , Humanos , Ácido Quinurénico/metabolismo , Ácido Quinurénico/farmacología , Ácido Quinurénico/uso terapéutico , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevención & control , Proteínas/metabolismo , Conejos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Proteína Inhibidora ATPasa
4.
iScience ; 23(5): 101109, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32417403

RESUMEN

Peroxisomes are metabolic organelles that perform a diverse array of critical functions in human physiology. Traditional isolation methods for peroxisomes can take more than 1 h to complete and can be laborious to implement. To address this, we have now extended our prior work on rapid organellar isolation to peroxisomes via the development of a peroxisomally localized 3XHA epitope tag ("PEROXO-Tag") and associated immunoprecipitation ("PEROXO-IP") workflow. Our PEROXO-IP workflow has excellent reproducibility, is easy to implement, and achieves highly rapid (~10 min post homogenization) and specific isolation of human peroxisomes, which we characterize here via proteomic profiling. By offering speed, specificity, reproducibility, and ease of use, the PEROXO-IP workflow should facilitate studies on the biology of peroxisomes.

5.
Science ; 362(6416)2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30442778

RESUMEN

One-carbon metabolism generates the one-carbon units required to synthesize many critical metabolites, including nucleotides. The pathway has cytosolic and mitochondrial branches, and a key step is the entry, through an unknown mechanism, of serine into mitochondria, where it is converted into glycine and formate. In a CRISPR-based genetic screen in human cells for genes of the mitochondrial pathway, we found sideroflexin 1 (SFXN1), a multipass inner mitochondrial membrane protein of unclear function. Like cells missing mitochondrial components of one-carbon metabolism, those null for SFXN1 are defective in glycine and purine synthesis. Cells lacking SFXN1 and one of its four homologs, SFXN3, have more severe defects, including being auxotrophic for glycine. Purified SFXN1 transports serine in vitro. Thus, SFXN1 functions as a mitochondrial serine transporter in one-carbon metabolism.


Asunto(s)
Mitocondrias/metabolismo , Serina/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo , Transporte Biológico , Sistemas CRISPR-Cas , Carbono/metabolismo , Pruebas Genéticas , Humanos , Células Jurkat , Células K562 , Transportador 1 de Sodio-Glucosa/genética
6.
Elife ; 72018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29745899

RESUMEN

Nitrogen-containing-bisphosphonates (N-BPs) are a class of drugs widely prescribed to treat osteoporosis and other bone-related diseases. Although previous studies have established that N-BPs function by inhibiting the mevalonate pathway in osteoclasts, the mechanism by which N-BPs enter the cytosol from the extracellular space to reach their molecular target is not understood. Here, we implemented a CRISPRi-mediated genome-wide screen and identified SLC37A3 (solute carrier family 37 member A3) as a gene required for the action of N-BPs in mammalian cells. We observed that SLC37A3 forms a complex with ATRAID (all-trans retinoic acid-induced differentiation factor), a previously identified genetic target of N-BPs. SLC37A3 and ATRAID localize to lysosomes and are required for releasing N-BP molecules that have trafficked to lysosomes through fluid-phase endocytosis into the cytosol. Our results elucidate the route by which N-BPs are delivered to their molecular target, addressing a key aspect of the mechanism of action of N-BPs that may have significant clinical relevance.


Asunto(s)
Antiportadores/metabolismo , Conservadores de la Densidad Ósea/metabolismo , Difosfonatos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Nitrógeno/metabolismo , Animales , Antiportadores/genética , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Humanos , Lisosomas/metabolismo , Ratones , Proteínas de Transporte de Monosacáridos/genética
7.
Science ; 360(6390): 751-758, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29700228

RESUMEN

The lysosome degrades and recycles macromolecules, signals to the master growth regulator mTORC1 [mechanistic target of rapamycin (mTOR) complex 1], and is associated with human disease. We performed quantitative proteomic analyses of rapidly isolated lysosomes and found that nutrient levels and mTOR dynamically modulate the lysosomal proteome. Upon mTORC1 inhibition, NUFIP1 (nuclear fragile X mental retardation-interacting protein 1) redistributes from the nucleus to autophagosomes and lysosomes. Upon these conditions, NUFIP1 interacts with ribosomes and delivers them to autophagosomes by directly binding to microtubule-associated proteins 1A/1B light chain 3B (LC3B). The starvation-induced degradation of ribosomes via autophagy (ribophagy) depends on the capacity of NUFIP1 to bind LC3B and promotes cell survival. We propose that NUFIP1 is a receptor for the selective autophagy of ribosomes.


Asunto(s)
Aminoácidos/deficiencia , Autofagosomas/metabolismo , Autofagia , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ribosomas/metabolismo , Animales , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteoma/metabolismo , Proteómica , Proteínas de Unión al ARN/genética , Receptores Citoplasmáticos y Nucleares/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción
8.
Cell ; 171(3): 642-654.e12, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053970

RESUMEN

The mTORC1 kinase is a master growth regulator that senses many environmental cues, including amino acids. Activation of mTORC1 by arginine requires SLC38A9, a poorly understood lysosomal membrane protein with homology to amino acid transporters. Here, we validate that SLC38A9 is an arginine sensor for the mTORC1 pathway, and we uncover an unexpectedly central role for SLC38A9 in amino acid homeostasis. SLC38A9 mediates the transport, in an arginine-regulated fashion, of many essential amino acids out of lysosomes, including leucine, which mTORC1 senses through the cytosolic Sestrin proteins. SLC38A9 is necessary for leucine generated via lysosomal proteolysis to exit lysosomes and activate mTORC1. Pancreatic cancer cells, which use macropinocytosed protein as a nutrient source, require SLC38A9 to form tumors. Thus, through SLC38A9, arginine serves as a lysosomal messenger that couples mTORC1 activation to the release from lysosomes of the essential amino acids needed to drive cell growth.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos Esenciales/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Animales , Arginina/metabolismo , Línea Celular , Línea Celular Tumoral , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Alineación de Secuencia
9.
Science ; 358(6364): 807-813, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29074583

RESUMEN

The lysosome degrades and recycles macromolecules, signals to the cytosol and nucleus, and is implicated in many diseases. Here, we describe a method for the rapid isolation of mammalian lysosomes and use it to quantitatively profile lysosomal metabolites under various cell states. Under nutrient-replete conditions, many lysosomal amino acids are in rapid exchange with those in the cytosol. Loss of lysosomal acidification through inhibition of the vacuolar H+-adenosine triphosphatase (V-ATPase) increased the luminal concentrations of most metabolites but had no effect on those of the majority of essential amino acids. Instead, nutrient starvation regulates the lysosomal concentrations of these amino acids, an effect we traced to regulation of the mechanistic target of rapamycin (mTOR) pathway. Inhibition of mTOR strongly reduced the lysosomal efflux of most essential amino acids, converting the lysosome into a cellular depot for them. These results reveal the dynamic nature of lysosomal metabolites and that V-ATPase- and mTOR-dependent mechanisms exist for controlling lysosomal amino acid efflux.


Asunto(s)
Aminoácidos/metabolismo , Lisosomas/metabolismo , Metabolómica , ATPasas de Translocación de Protón Vacuolares/metabolismo , Fraccionamiento Químico/métodos , Células HEK293 , Humanos , Lisosomas/química , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
10.
Nature ; 543(7645): 438-442, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28199306

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy. Amino acids are a key input to this system, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RAGA, and GATOR2, a positive regulator of unknown molecular function. Here we identify a protein complex (KICSTOR) that is composed of four proteins, KPTN, ITFG2, C12orf66 and SZT2, and that is required for amino acid or glucose deprivation to inhibit mTORC1 in cultured human cells. In mice that lack SZT2, mTORC1 signalling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds and recruits GATOR1, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Notably, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signalling. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signalling, which, like GATOR1, is mutated in human disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aminoácidos/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Femenino , Proteínas Activadoras de GTPasa , Glucosa/deficiencia , Glucosa/metabolismo , Humanos , Cadenas alfa de Integrinas , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Especificidad por Sustrato , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
11.
Cell ; 165(1): 153-164, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26972053

RESUMEN

Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ~30 µM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway.


Asunto(s)
Arginina/metabolismo , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Serina-Treonina Quinasas TOR/metabolismo
12.
Science ; 347(6218): 188-94, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25567906

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase-dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid-sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Arginina/metabolismo , Lisosomas/enzimología , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Arginina/deficiencia , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transducción de Señal
13.
Cancer Cell ; 24(6): 751-65, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24332043

RESUMEN

High-grade serous ovarian carcinoma presents significant clinical and therapeutic challenges. Although the traditional model of carcinogenesis has focused on the ovary as a tumor initiation site, recent studies suggest that there may be additional sites of origin outside the ovary, namely the secretory cells of the fallopian tube. Our study demonstrates that high-grade serous tumors can originate in fallopian tubal secretory epithelial cells and also establishes serous tubal intraepithelial carcinoma as the precursor lesion to high-grade serous ovarian and peritoneal carcinomas in animal models targeting the Brca, Tp53, and Pten genes. These findings offer an avenue to address clinically important questions that are critical for cancer prevention and early detection in women carrying BRCA1 and BRCA2 mutations.


Asunto(s)
Transformación Celular Neoplásica , Cistadenocarcinoma Seroso/etiología , Neoplasias de las Trompas Uterinas/patología , Genes BRCA1 , Genes BRCA2 , Neoplasias Ováricas/etiología , Lesiones Precancerosas/patología , Animales , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Epitelio/patología , Femenino , Genes p53 , Integrasas/genética , Ratones , Ratones Endogámicos C57BL , Clasificación del Tumor , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Factor de Transcripción PAX8 , Fosfohidrolasa PTEN/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/fisiología
14.
Cancer Res ; 73(23): 6987-97, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24121488

RESUMEN

The centrality of phosphoinositide-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intratumoral concentration, and an insulin resistance "class effect." This study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG [1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polythylene glycol)]. The supramolecular nanoparticles (SNP) that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-Ras(LSL/+)/Pten(fl/fl) ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the SNPs highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the SNPs exerted a temporally sustained inhibition of phosphorylation of Akt, mTOR, S6K, and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of SNPs abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Resistencia a la Insulina , Nanopartículas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Animales , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Terapia Molecular Dirigida , Peso Molecular , Nanopartículas/química , Resultado del Tratamiento , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Proc Natl Acad Sci U S A ; 109(43): E2939-48, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23019585

RESUMEN

Chemoresistance to platinum therapy is a major obstacle that needs to be overcome in the treatment of ovarian cancer patients. The high rates and patterns of therapeutic failure seen in patients are consistent with a steady accumulation of drug-resistant cancer stem cells (CSCs). This study demonstrates that the Notch signaling pathway and Notch3 in particular are critical for the regulation of CSCs and tumor resistance to platinum. We show that Notch3 overexpression in tumor cells results in expansion of CSCs and increased platinum chemoresistance. In contrast, γ-secretase inhibitor (GSI), a Notch pathway inhibitor, depletes CSCs and increases tumor sensitivity to platinum. Similarly, a Notch3 siRNA knockdown increases the response to platinum therapy, further demonstrating that modulation of tumor chemosensitivity by GSI is Notch specific. Most importantly, the cisplatin/GSI combination is the only treatment that effectively eliminates both CSCs and the bulk of tumor cells, indicating that a dual combination targeting both populations is needed for tumor eradication. In addition, we found that the cisplatin/GSI combination therapy has a synergistic cytotoxic effect in Notch-dependent tumor cells by enhancing the DNA-damage response, G(2)/M cell-cycle arrest, and apoptosis. Based on these results, we conclude that targeting the Notch pathway could significantly increase tumor sensitivity to platinum therapy. Our study suggests important clinical applications for targeting Notch as part of novel treatment strategies upon diagnosis of ovarian cancer and at recurrence. Both platinum-resistant and platinum-sensitive relapses may benefit from such an approach as clinical data suggest that all relapses after platinum therapy are increasingly platinum resistant.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Células Madre Neoplásicas/patología , Neoplasias Ováricas/patología , Receptores Notch/metabolismo , Animales , Ciclo Celular , Muerte Celular , Daño del ADN , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Receptor Notch3 , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...