Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 17(29): 7038-7046, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34251015

RESUMEN

Granular hydrogels with high stability, strength, and toughness are laborious to develop. Post-curing is often employed to bind microgels chemically and enhance mechanical properties. Here a unique strategy was investigated to maintain microgels together with a novel self-reinforced silk granular hydrogel composed of 10 wt% 20 kDa poly(ethylene glycol) dimethacrylate microgels and regenerated silk fibroin fibers. The principle is to use the swelling of microgels to concentrate the surrounding solution and regenerate silk fibroin in situ. Self-reinforcement is subsequently one of the added functions. We showed that silk fibroin in most compositions was homogeneously distributed and had successfully regenerated in situ around microgels, holding them together in a network-like structure. FTIR analysis revealed the presence of amorphous and crystalline silk fibroin, where 50% of the secondary structures could be assigned to strong ß-sheets. Swelling ratios, i.e. 10-45 vol%, increased proportionally with the microgel content, suggesting that mainly microgels governed swelling. In contrast, the elastic modulus, i.e. 58-296 kPa, increased almost linearly with silk fibroin content. Moreover, we showed that the precursor could be injected and cast into a given shape. Viscous precursors of various compositions were also placed side by side to create mechanical gradients. Finally, it was demonstrated that silk granular hydrogel could successfully be synthesized with other microgels like gelatin methacryloyl. Silk granular hydrogels represent, therefore, a novel class of self-reinforced hydrogel structures with tunable swelling and elastic properties.


Asunto(s)
Fibroínas , Hidrogeles , Conformación Proteica en Lámina beta , Regeneración , Seda
2.
Soft Matter ; 16(15): 3769-3778, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32239014

RESUMEN

Developing hydrogels with optimal properties for specific applications is challenging as most of these properties, such as toughness, stiffness, swelling or deformability, are interrelated. The improvement of one property usually comes at the cost of another. In order to decouple the interdependence between these properties and to extend the range of material properties for hydrogels, we propose a strategy that combines composite and microgel approaches. The study focuses first on tailoring the swelling performance of hydrogels while minimally affecting other properties. The underlying principle is to partially substitute some of the hydrogels with pre-swollen microgels composed of the same materials. Swelling reductions up to 45% were obtained. Those granular hydrogels were then reinforced with nano-fibrillated cellulose fibres obtaining hybrid granular materials to improve their toughness and to further reduce their initial swelling. Four different structures of neat, granular and composite hydrogels including 63 different hydrogel compositions based on 20 kDa poly(ethylene glycol)dimethacrylate showed that the swelling ratio could be tailored without significantly affecting elastic modulus and deformation performance. The results explain the role of the PEGDM precursors on the swelling of the microgels as well as the influence of the microgel and fibre contents on the final properties. Moreover, the precursors of hydrogels with similar mechanical or swelling performance were injectable with a wide range of complex viscosities from 0.1 Pa s to over 1000 Pa s offering new opportunities for applications in confined as well as in unconfined environments.

3.
ACS Appl Mater Interfaces ; 10(45): 38692-38699, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30335947

RESUMEN

Despite the development of hydrogels with high mechanical properties, insufficient adhesion between these materials and biological surfaces significantly limits their use in the biomedical field. By controlling toughening processes, we designed a composite double-network hydrogel with ∼90% water content, which creates a dissipative interface and robustly adheres to soft tissues such as cartilage and meniscus. A double-network matrix composed of covalently cross-linked poly(ethylene glycol) dimethacrylate and ionically cross-linked alginate was reinforced with nanofibrillated cellulose. No tissue surface modification was needed to obtain high adhesion properties of the developed hydrogel. Instead, mechanistic principles were used to control interfacial crack propagation. Comparing to commercial tissue adhesives, the integration of the dissipative polymeric network on the soft tissue surfaces allowed a significant increase in the adhesion strength, such as ∼130 kPa for articular cartilage. Our findings highlight the significant role of controlling hydrogel structure and dissipation processes for toughening the interface. This research provides a promising path to the development of highly adhesive hydrogels for tissues repair.


Asunto(s)
Hidrogeles/química , Hidrogeles/farmacología , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Alginatos/química , Alginatos/farmacología , Animales , Huesos/efectos de los fármacos , Cartílago/efectos de los fármacos , Bovinos , Celulosa/química , Celulosa/farmacología , Menisco/efectos de los fármacos , Metacrilatos/química , Metacrilatos/farmacología , Nanoestructuras/química , Polietilenglicoles/química , Polietilenglicoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA