Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873058

RESUMEN

Protein homeostasis is constantly being challenged with protein misfolding that leads to aggregation. Hsp70 is one of the versatile chaperones that interact with misfolded proteins and actively support their folding. Multifunctional Hsp70s are harnessed to specific roles by J-domain proteins (JDPs, also known as Hsp40s). Interaction with the J-domain of these cochaperones stimulates ATP hydrolysis in Hsp70, which stabilizes substrate binding. In eukaryotes, two classes of JDPs, Class A and Class B, engage Hsp70 in the reactivation of aggregated proteins. In most species, excluding metazoans, protein recovery also relies on an Hsp100 disaggregase. Although intensely studied, many mechanistic details of how the two JDP classes regulate protein disaggregation are still unknown. Here, we explore functional differences between the yeast Class A (Ydj1) and Class B (Sis1) JDPs at the individual stages of protein disaggregation. With real-time biochemical tools, we show that Ydj1 alone is superior to Sis1 in aggregate binding, yet it is Sis1 that recruits more Ssa1 molecules to the substrate. This advantage of Sis1 depends on its ability to bind to the EEVD motif of Hsp70, a quality specific to most of Class B JDPs. This second interaction also conditions the Hsp70-induced aggregate modification that boosts its subsequent dissolution by the Hsp104 disaggregase. Our results suggest that the Sis1-mediated chaperone assembly at the aggregate surface potentiates the entropic pulling, driven polypeptide disentanglement, while Ydj1 binding favors the refolding of the solubilized proteins. Such subspecialization of the JDPs across protein reactivation improves the robustness and efficiency of the disaggregation machinery.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Agregado de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Unión Proteica/fisiología , Dominios Proteicos/fisiología , Pliegue de Proteína , Proteostasis/fisiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
3.
Genet Med ; 23(9): 1705-1714, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34140661

RESUMEN

PURPOSE: To investigate monoallelic CLPB variants. Pathogenic variants in many genes cause congenital neutropenia. While most patients exhibit isolated hematological involvement, biallelic CLPB variants underlie a neurological phenotype ranging from nonprogressive intellectual disability to prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, 3-methylglutaconic aciduria, and neutropenia. CLPB was recently shown to be a mitochondrial refoldase; however, the exact function remains elusive. METHODS: We investigated six unrelated probands from four countries in three continents, with neutropenia and a phenotype dominated by epilepsy, developmental issues, and 3-methylglutaconic aciduria with next-generation sequencing. RESULTS: In each individual, we identified one of four different de novo monoallelic missense variants in CLPB. We show that these variants disturb refoldase and to a lesser extent ATPase activity of CLPB in a dominant-negative manner. Complexome profiling in fibroblasts showed CLPB at very high molecular mass comigrating with the prohibitins. In control fibroblasts, HAX1 migrated predominantly as monomer while in patient samples multiple HAX1 peaks were observed at higher molecular masses comigrating with CLPB thus suggesting a longer-lasting interaction between CLPB and HAX1. CONCLUSION: Both biallelic as well as specific monoallelic CLPB variants result in a phenotypic spectrum centered around neurodevelopmental delay, seizures, and neutropenia presumably mediated via HAX1.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Errores Innatos del Metabolismo , Neutropenia , Proteínas Adaptadoras Transductoras de Señales , Humanos , Discapacidad Intelectual/genética , Neutropenia/genética
5.
J Mol Biol ; 431(11): 2180-2196, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31026451

RESUMEN

Hsp104 is a yeast chaperone that rescues misfolded proteins from aggregates associated with proteotoxic stress and aging. Hsp104 consists of N-terminal domain, regulatory M-domain and two ATPase domains, assembled into a spiral-shaped hexamer. Protein disaggregation involves polypeptide extraction from an aggregate and its translocation through the central channel. This process relies on Hsp104 cooperation with the Hsp70 chaperone, which also plays important role in regulation of the disaggregase. Although Hsp104 protein-unfolding activity enables cells to survive stress, when uncontrolled, it becomes toxic to the cell. In this work, we investigated the significance of the interaction between Hsp70 and the M-domain of Hsp104 for functioning of the disaggregation system. We identified phenylalanine at position 508 in Hsp104 to be the key site of interaction with Hsp70. Disruption of this site makes Hsp104 unable to bind protein aggregates and to confer tolerance in yeast cells. The use of this Hsp104 variant demonstrates that Hsp70 allows successful initiation of disaggregation only as long as it is able to interact with the disaggregase. As reported previously, this interaction causes release of the M-domain-driven repression of Hsp104. Now we reveal that, apart from this allosteric effect, the interaction between the chaperone partners itself contributes to effective initiation of disaggregation and plays important role in cell protection against Hsp104-induced toxicity. Interaction with Hsp70 shifts Hsp104 substrate specificity from non-aggregated, disordered substrates toward protein aggregates. Accordingly, Hsp70-mediated sequestering of the Hsp104 unfoldase in aggregates makes it less toxic and more productive.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Agregado de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/química , Simulación del Acoplamiento Molecular , Desnaturalización Proteica , Pliegue de Proteína , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...