Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
MAbs ; 16(1): 2309685, 2024.
Article En | MEDLINE | ID: mdl-38356181

Rabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death 1 (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities.


Antibodies , Programmed Cell Death 1 Receptor , Rabbits , Animals , Mice , Humans , Complementarity Determining Regions/chemistry , Protein Engineering/methods
2.
Nature ; 610(7930): 182-189, 2022 10.
Article En | MEDLINE | ID: mdl-36131013

Most current therapies that target plasma membrane receptors function by antagonizing ligand binding or enzymatic activities. However, typical mammalian proteins comprise multiple domains that execute discrete but coordinated activities. Thus, inhibition of one domain often incompletely suppresses the function of a protein. Indeed, targeted protein degradation technologies, including proteolysis-targeting chimeras1 (PROTACs), have highlighted clinically important advantages of target degradation over inhibition2. However, the generation of heterobifunctional compounds binding to two targets with high affinity is complex, particularly when oral bioavailability is required3. Here we describe the development of proteolysis-targeting antibodies (PROTABs) that tether cell-surface E3 ubiquitin ligases to transmembrane proteins, resulting in target degradation both in vitro and in vivo. Focusing on zinc- and ring finger 3 (ZNRF3), a Wnt-responsive ligase, we show that this approach can enable colorectal cancer-specific degradation. Notably, by examining a matrix of additional cell-surface E3 ubiquitin ligases and transmembrane receptors, we demonstrate that this technology is amendable for 'on-demand' degradation. Furthermore, we offer insights on the ground rules governing target degradation by engineering optimized antibody formats. In summary, this work describes a strategy for the rapid development of potent, bioavailable and tissue-selective degraders of cell-surface proteins.


Antibodies , Antibody Specificity , Membrane Proteins , Proteolysis , Ubiquitin-Protein Ligases , Animals , Antibodies/immunology , Antibodies/metabolism , Colorectal Neoplasms/metabolism , Ligands , Membrane Proteins/immunology , Membrane Proteins/metabolism , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Substrate Specificity , Ubiquitin-Protein Ligases/immunology , Ubiquitin-Protein Ligases/metabolism
3.
J Transl Med ; 19(1): 517, 2021 12 20.
Article En | MEDLINE | ID: mdl-34930320

BACKGROUND: Over the past decade, human Interleukin 33 (hIL-33) has emerged as a key contributor to the pathogenesis of numerous inflammatory diseases. Despite the existence of several commercial hIL-33 assays spanning multiple platform technologies, their ability to provide accurate hIL-33 concentration measurements and to differentiate between active (reduced) and inactive (oxidized) hIL-33 in various matrices remains uncertain. This is especially true for lower sample volumes, matrices with low hIL-33 concentrations, and matrices with elevated levels of soluble Interleukin 1 Receptor-Like 1 (sST2), an inactive form of ST2 that competes with membrane bound ST2 for hIL-33 binding. RESULTS: We tested the performance of several commercially available hIL-33 detection assays in various human matrices and found that most of these assays lacked the sensitivity to accurately detect reduced hIL-33 at biologically relevant levels (sub-to-low pg/mL), especially in the presence of human sST2 (hsST2), and/or lacked sufficient target specificity. To address this, we developed and validated a sensitive and specific enzyme-linked immunosorbent assay (ELISA) capable of detecting reduced and total hIL-33 levels even in the presence of high concentrations of sST2. By incorporating the immuno-polymerase chain reaction (iPCR) platform, we further increased the sensitivity of this assay for the reduced form of hIL-33 by ~ 52-fold. Using this hIL-33 iPCR assay, we detected hIL-33 in postmortem human vitreous humor (VH) samples from donors with age-related macular degeneration (AMD) and found significantly increased hIL-33 levels when compared to control individuals. No statistically significant difference was observed in aqueous humor (AH) from AMD donors nor in plasma and nasosorption fluid (NF) from asthma patients compared to control individuals. CONCLUSIONS: Unlike existing commercial hIL-33 assays, our hIL-33 bioassays are highly sensitive and specific and can accurately quantify hIL-33 in various human clinical matrices, including those with high levels of hsST2. Our results provide a proof of concept of the utility of these assays in clinical trials targeting the hIL-33/hST2 pathway.


Asthma , Macular Degeneration , Biological Assay , Biomarkers , Drug Development , Enzyme-Linked Immunosorbent Assay/methods , Humans , Interleukin-33 , Sensitivity and Specificity
4.
Commun Biol ; 3(1): 687, 2020 11 19.
Article En | MEDLINE | ID: mdl-33214666

Vascular leakage, or edema, is a serious complication of acute allergic reactions. Vascular leakage is triggered by the release of histamine and serotonin from granules within tissue-resident mast cells. Here, we show that expression of Neutrophil Serine Protease 4 (NSP4) during the early stages of mast cell development regulates mast cell-mediated vascular leakage. In myeloid precursors, the granulocyte-macrophage progenitors (GMPs), loss of NSP4 results in the decrease of cellular levels of histamine, serotonin and heparin/heparan sulfate. Mast cells that are derived from NSP4-deficient GMPs have abnormal secretory granule morphology and a sustained reduction in histamine and serotonin levels. Consequently, in passive cutaneous anaphylaxis and acute arthritis models, mast cell-mediated vascular leakage in the skin and joints is substantially reduced in NSP4-deficient mice. Our findings reveal that NSP4 is required for the proper storage of vasoactive amines in mast cell granules, which impacts mast cell-dependent vascular leakage in mouse models of immune complex-mediated diseases.


Mast Cells/enzymology , Serine Proteases/metabolism , Adoptive Transfer , Animals , Antigen-Antibody Complex , Gene Expression Regulation, Enzymologic , Histamine/metabolism , Mice , Mice, Knockout , Neutrophils , Serine Proteases/genetics , Serotonin/metabolism
6.
Sci Rep ; 8(1): 7348, 2018 05 09.
Article En | MEDLINE | ID: mdl-29743491

Geographic atrophy (GA), the advanced form of dry age-related macular degeneration (AMD), is characterized by progressive loss of retinal pigment epithelium cells and photoreceptors in the setting of characteristic extracellular deposits and remains a serious unmet medical need. While genetic predisposition to AMD is dominated by polymorphisms in complement genes, it remains unclear how complement activation contributes to retinal atrophy. Here we demonstrate that complement is activated on photoreceptor outer segments (POS) in the retina peripheral to atrophic lesions associated with GA. When exposed to human serum following outer blood-retinal barrier breakdown, POS act as potent activators of the classical and alternative complement pathway. In mouse models of retinal degeneration, classical and alternative pathway complement activation on photoreceptors contributed to the loss of photoreceptor function. This was dependent on C5a-mediated recruitment of peripheral blood monocytes but independent of resident microglia. Genetic or pharmacologic inhibition of both classical and alternative complement C3 and C5 convertases was required to reduce progressive degeneration of photoreceptor rods and cones. Our study implicates systemic classical and alternative complement proteins and peripheral blood monocytes as critical effectors of localized retinal degeneration with potential relevance for the contribution of complement activation to GA.


Complement Activation/genetics , Geographic Atrophy/physiopathology , Retinal Rod Photoreceptor Cells/metabolism , Animals , Atrophy/pathology , Complement Activation/physiology , Complement C3/genetics , Complement C3/physiology , Complement C4/genetics , Complement C4/physiology , Geographic Atrophy/genetics , Humans , Macular Degeneration/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Photoreceptor Cells/metabolism , Retina/metabolism , Retinal Degeneration/pathology , Retinal Pigment Epithelium/metabolism
7.
J Exp Med ; 213(2): 189-207, 2016 Feb 08.
Article En | MEDLINE | ID: mdl-26755704

Age-related macular degeneration (AMD), a leading cause of vision impairment in the ageing population, is characterized by irreversible loss of retinal pigment epithelial (RPE) cells and photoreceptors and can be associated with choroidal neovascularization. Mononuclear phagocytes are often present in AMD lesions, but the processes that direct myeloid cell recruitment remain unclear. Here, we identify IL-33 as a key regulator of inflammation and photoreceptor degeneration after retina stress or injury. IL-33(+) Müller cells were more abundant and IL-33 cytokine was elevated in advanced AMD cases compared with age-matched controls with no AMD. In rodents, retina stress resulted in release of bioactive IL-33 that in turn increased inflammatory chemokine and cytokine expression in activated Müller cells. Deletion of ST2, the IL-33 receptor α chain, or treatment with a soluble IL-33 decoy receptor significantly reduced release of inflammatory mediators from Müller cells, inhibited accumulation of mononuclear phagocytes in the outer retina, and protected photoreceptor rods and cones after a retina insult. This study demonstrates a central role for IL-33 in regulating mononuclear phagocyte recruitment to the photoreceptor layer and positions IL-33 signaling as a potential therapeutic target in macular degenerative diseases.


Immunity, Innate , Interleukin-33/metabolism , Macular Degeneration/immunology , Aged , Aged, 80 and over , Animals , Case-Control Studies , Cell Nucleus/immunology , Cytokines/metabolism , Ependymoglial Cells/immunology , Ependymoglial Cells/pathology , Female , Humans , In Vitro Techniques , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33/chemistry , Interleukin-33/deficiency , Interleukin-33/genetics , Macula Lutea/immunology , Macula Lutea/pathology , Macular Degeneration/genetics , Macular Degeneration/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Protein Processing, Post-Translational , Rats , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Interleukin/deficiency , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Retinal Pigment Epithelium/immunology , Retinal Pigment Epithelium/pathology
8.
J Exp Med ; 207(1): 7-16, 2010 Jan 18.
Article En | MEDLINE | ID: mdl-20038601

Multiple sclerosis and its preclinical model, experimental autoimmune encephalomyelitis, are marked by perivascular inflammation and demyelination. Myeloid cells, derived from circulating progenitors, are a prominent component of the inflammatory infiltrate and are believed to directly contribute to demyelination and axonal damage. How the cytotoxic activity of these myeloid cells is regulated is poorly understood. We identify CMRF-35-like molecule-1 (CLM-1) as a negative regulator of autoimmune demyelination. CLM-1 is expressed on inflammatory myeloid cells present in demyelinating areas of the spinal cord after immunization of mice with MOG35-55 (myelin oligodendrocyte glycoprotein) peptide. Absence of CLM-1 resulted in significantly increased nitric oxide and proinflammatory cytokine production, along with increased demyelination and worsened clinical scores, whereas T cell responses in the periphery or in the spinal cord remained unaffected. This study thus identifies CLM-1 as a negative regulator of myeloid effector cells in autoimmune demyelination.


Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Myeloid Cells/immunology , Receptors, Immunologic/immunology , Animals , Cytokines/genetics , Cytokines/immunology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Glycoproteins/adverse effects , Glycoproteins/pharmacology , Inflammation/chemically induced , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/metabolism , Mice , Mice, Knockout , Multiple Sclerosis/chemically induced , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein , Myeloid Cells/pathology , Nitric Oxide/genetics , Nitric Oxide/immunology , Peptide Fragments/adverse effects , Peptide Fragments/pharmacology , Receptors, Immunologic/genetics
9.
J Biol Chem ; 284(51): 35605-11, 2009 Dec 18.
Article En | MEDLINE | ID: mdl-19833734

CRIg is a recently discovered complement C3 receptor expressed on a subpopulation of tissue-resident macrophages. The extracellular IgV domain of CRIg (CRIg-ECD) holds considerable promise as a potential therapeutic because it selectively inhibits the alternative pathway of complement by binding to C3b and inhibiting proteolytic activation of C3 and C5. However, CRIg binds weakly to the convertase subunit C3b (K(D) = 1.1 microm), and thus a relatively high concentration of protein is required to reach nearly complete complement inhibition. To improve therapeutic efficacy while minimizing risk of immunogenicity, we devised a phage display strategy to evolve a high affinity CRIg-ECD variant with a minimal number of mutations. Using the crystal structure of CRIg in complex with C3b as a guide for library design, we isolated a CRIg-ECD double mutant (Q64R/M86Y, CRIg-v27) that showed increased binding affinity and improved complement inhibitory activity relative to CRIg-ECD. In a mouse model of arthritis, treatment with a Fc fusion of CRIg-v27 resulted in a significant reduction in clinical scores compared with treatment with an Fc fusion of CRIg-ECD. This study clearly illustrates how phage display technology and structural information can be combined to generate proteins with nearly natural sequences that act as potent complement inhibitors with greatly improved therapeutic efficacy.


Arthritis/drug therapy , Receptors, Complement 3b/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Amino Acid Substitution , Animals , Arthritis/metabolism , Complement C3b/genetics , Complement C3b/metabolism , Complement C5/genetics , Complement C5/metabolism , Complement Pathway, Alternative/drug effects , Disease Models, Animal , Humans , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mutation, Missense , Protein Structure, Tertiary/physiology , Rabbits , Receptors, Complement 3b/chemistry , Receptors, Complement 3b/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Structure-Activity Relationship
10.
J Biol Chem ; 284(16): 10473-9, 2009 Apr 17.
Article En | MEDLINE | ID: mdl-19196712

Amplification of the complement cascade through the alternative pathway can lead to excessive inflammation. Targeting C3b, a component central to the alternative pathway of complement, provides a powerful approach to inhibit complement-mediated immune responses and tissue injury. In the present study, phage display technology was employed to generate an antibody that selectively recognizes C3b but not the non-activated molecule C3. The crystal structure of C3b in complex with a Fab fragment of this antibody (S77) illustrates the structural basis for this selectivity. Cleavage of C3 to C3b results in a plethora of structural changes within C3, including the rearrangement of macroglobulin domain 6 enabling binding of S77 to the adjacent macroglobulin domain 7 domain. S77 blocks binding of factor B to C3b inhibiting the first step in the formation of the alternative pathway C3 convertase. In addition, S77 inhibits C5 binding to C3b. This results in significantly reduced formations of anaphylatoxins and membrane-attack complexes. This study for the first time demonstrates the structural basis for complement inhibition by a C3b-selective antibody and provides insights into the molecular mechanisms of alternative pathway complement activation.


Antibodies , Complement C3b/immunology , Complement Pathway, Alternative/physiology , Immunoglobulin Fab Fragments , Protein Conformation , Animals , Antibodies/chemistry , Antibodies/metabolism , Complement C3 Convertase, Alternative Pathway/metabolism , Complement C3b/chemistry , Complement C3b/genetics , Complement C3b/metabolism , Complement C5 Convertase, Alternative Pathway/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Stability , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Macaca mulatta , Models, Molecular , Molecular Sequence Data , Peptide Library , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Receptors, Complement 3b/chemistry , Receptors, Complement 3b/metabolism
11.
J Immunol ; 181(11): 7902-8, 2008 Dec 01.
Article En | MEDLINE | ID: mdl-19017980

An important function of the complement cascade is to coat self and foreign particles with C3-proteins that serve as ligands for phagocytic receptors. Although tissue resident macrophages play an important role in complement-mediated clearance, the receptors coordinating this process have not been well characterized. In the present study, we identified a subpopulation of resident peritoneal macrophages characterized by high expression of complement receptor of the Ig superfamily (CRIg), a recently discovered complement C3 receptor. Macrophages expressing CRIg showed significantly increased binding and subsequent internalization of complement-opsonized particles compared with CRIg negative macrophages. CRIg internalized monovalent ligands and was able to bind complement-opsonized targets in the absence of Ca(2+) and Mg(2+), which differs from the beta(2)-integrin CR3 that requires divalent cations and polyvalent ligands for activation of the receptor. Although CRIg dominated in immediate binding of complement-coated particles, CRIg and CR3 contributed independently to subsequent particle phagocytosis. CRIg thus identifies a subset of tissue resident macrophages capable of increased phagocytosis of complement C3-coated particles, a function critical for immune clearance.


Complement C3/immunology , Macrophages/immunology , Phagocytosis/immunology , Receptors, Complement/immunology , Animals , CD18 Antigens/immunology , Calcium/immunology , Gene Expression Regulation/immunology , Ligands , Magnesium/immunology , Mice , Mice, Inbred AKR , Mice, Knockout , Receptors, Complement/agonists
12.
J Exp Med ; 204(6): 1319-25, 2007 Jun 11.
Article En | MEDLINE | ID: mdl-17548523

Complement is an important component of the innate and adaptive immune response, yet complement split products generated through activation of each of the three complement pathways (classical, alternative, and lectin) can cause inflammation and tissue destruction. Previous studies have shown that complement activation through the alternative, but not classical, pathway is required to initiate antibody-induced arthritis in mice, but it is unclear if the alternative pathway (AP) plays a role in established disease. Previously, we have shown that human complement receptor of the immunoglobulin superfamily (CRIg) is a selective inhibitor of the AP of complement. Here, we present the crystal structure of murine CRIg and, using mutants, provide evidence that the structural requirements for inhibition of the AP are conserved in human and mouse. A soluble form of CRIg reversed inflammation and bone loss in two experimental models of arthritis by inhibiting the AP of complement in the joint. Our data indicate that the AP of complement is not only required for disease induction, but also disease progression. The extracellular domain of CRIg thus provides a novel tool to study the effects of inhibiting the AP of complement in established disease and constitutes a promising therapeutic with selectivity for a single complement pathway.


Arthritis, Experimental/drug therapy , Bone Resorption/drug therapy , Models, Molecular , Receptors, Complement/genetics , Animals , Arthritis, Experimental/complications , Bone Resorption/etiology , Complement Inactivating Agents , Crystallization , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Mice , Receptors, Complement/chemistry
13.
Immunity ; 24(6): 813-826, 2006 Jun.
Article En | MEDLINE | ID: mdl-16782036

The response of thymocytes to pre-T cell receptor (pre-TCR) signaling includes proliferation and gene rearrangement, two cellular processes that are incompatible. The control of proliferation by pre-TCR signals depends on the activities of the transcription factors RORgammat, Egr3, E12, and E47. Here, we describe a regulatory network in which interplay between these factors ensures transient proliferation that is temporally distinct from gene rearrangement. RORgammat expression was elevated after pre-TCR signaling, and RORgammat promoted gene rearrangement in CD4+, CD8+ cells by inhibiting cell division, promoting survival via Bcl-X(L), and inducing Rag2. Egr3 was transiently induced by pre-TCR signals and promoted a distinct proliferative phase by reducing E protein-dependent RORgammat expression and interacting with RORgammat to prevent induction of target genes. After Egr3 subsided, the expression and function of RORgammat increased. Thus, transient induction of Egr3 delays the effects of RORgammat and enables pre-TCR signaling to induce both proliferation and gene rearrangement.


Early Growth Response Protein 3/metabolism , Lymphocyte Activation , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Retinoic Acid/metabolism , Receptors, Thyroid Hormone/metabolism , T-Lymphocytes/immunology , TCF Transcription Factors/metabolism , Animals , E-Box Elements , Early Growth Response Protein 3/genetics , Gene Rearrangement, T-Lymphocyte , Inhibitor of Differentiation Proteins/metabolism , Lymphocyte Activation/genetics , Mice , Mice, Mutant Strains , Nuclear Receptor Subfamily 1, Group F, Member 3 , Promoter Regions, Genetic , RNA-Binding Proteins/genetics , Rats , Receptors, Retinoic Acid/genetics , Receptors, Thyroid Hormone/genetics , Signal Transduction , Transcription Factor 7-Like 1 Protein
14.
J Immunol ; 173(1): 340-8, 2004 Jul 01.
Article En | MEDLINE | ID: mdl-15210792

In the absence of selection, CD4+, CD8+ double-positive (DP) thymocytes will die after 3-4 days. The mechanism for regulating the life span of DP cells is unknown. Previously, we demonstrated that the zinc finger transcription factor, early growth response gene 3 (Egr3), promotes proliferation during the transition from double negative (DN) to DP. In this study we demonstrate a novel role for Egr3 in controlling DP thymocyte survival in mice. Constitutive transgenic expression of Egr3 in thymocytes increases apoptosis among DP cells and shortens their survival in vitro. In addition, DP cells in Egr3 transgenic mice have poor expression of TCRalpha, and based on the predominant usage of 3' Valpha and 5' Jalpha gene segments, the low level of TCRalpha expression is a result of DP death soon after the initiation of TCRalpha rearrangements. Constitutive transgenic expression of Egr3 results in poor expression of Bcl-x(L) and the thymic isoform of retinoic acid receptor-related orphan receptor gamma (RORgammat) in DP thymocytes, two molecules that are required in DP cells for normal life span. Egr3 expression induced by pre-TCR signals in nontransgenic mice is transient and returns to background levels before RORgammat or Bcl-x(L) is induced. The data support a model in which Egr3 must be transiently induced in response to pre-TCR signals, so that the expression of the prosurvival molecules, RORgammat and Bcl-x(L), can be elevated only after the proliferative signal provided by Egr3 has subsided.


CD4 Antigens/analysis , CD8 Antigens/analysis , DNA-Binding Proteins/physiology , T-Lymphocytes/physiology , Transcription Factors/physiology , Animals , Cell Survival , DNA-Binding Proteins/genetics , Early Growth Response Protein 3 , Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor , Mice , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 3 , Proto-Oncogene Proteins c-bcl-2/analysis , Receptors, Antigen, T-Cell, alpha-beta/analysis , Receptors, Antigen, T-Cell, alpha-beta/physiology , Receptors, Retinoic Acid/genetics , Receptors, Thyroid Hormone/genetics , Transcription Factors/genetics , bcl-X Protein
15.
J Immunol ; 172(2): 964-71, 2004 Jan 15.
Article En | MEDLINE | ID: mdl-14707069

In thymocytes developing in the alphabeta lineage, the transition from CD4, CD8 double negative (DN) to CD4, CD8 double positive (DP) is associated with several rounds of cell division and changes in the expression of multiple genes. This transition is induced by the formation of a pre-TCR that includes a rearranged TCR beta-chain and the pre-TCR alpha-chain. The mechanism by which the pre-TCR influences both gene expression and proliferation has not been defined. We have evaluated the role played by early growth response gene 3 (Egr3) in translating pre-TCR signals into differentiation and proliferation. Egr3 is a transcriptional regulator that contains a zinc-finger DNA binding domain. We find that Egr3-deficient mice have a reduced number of thymocytes compared with wild-type mice, and that this is due to poor proliferation during the DN to DP transition. Treatment of both Egr3(+/+) and Egr3(-/-) mice on the Rag1(-/-) background with anti-CD3epsilon Ab in vivo results in similar differentiation events, but reduced cell recovery in the Egr3(-/-) mice. We have also generated transgenic mice that express high levels of Egr3 constitutively, and when these mice are bred onto a Rag1(-/-) background they exhibit increased proliferation in the absence of stimulation and have pre-TCR alpha-chain and CD25 down-regulation, as well as increased Calpha expression. The results show that Egr3 is an important regulator of proliferation in response to pre-TCR signals, and that it also may regulate some specific aspects of differentiation.


CD4 Antigens/biosynthesis , CD8 Antigens/biosynthesis , DNA-Binding Proteins/physiology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Transcription Factors/physiology , Animals , Antibodies, Monoclonal/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Division/genetics , Cell Division/immunology , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Early Growth Response Protein 3 , Gene Expression Regulation, Developmental/immunology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Membrane Glycoproteins/physiology , Mice , Mice, Inbred AKR , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Precursors/physiology , Receptors, Antigen, T-Cell, alpha-beta/physiology , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocyte Subsets/metabolism , Thymus Gland/metabolism , Transcription Factors/biosynthesis , Transcription Factors/deficiency , Transcription Factors/genetics , Transgenes/immunology
16.
Eur J Immunol ; 33(11): 3109-16, 2003 Nov.
Article En | MEDLINE | ID: mdl-14579279

Mature T cells residing in peripheral lymphoid organs have frequent contact with antigen presenting cells (APC). Such contact may be required for T cell survival, but the degree to which signals in mature T cells are induced by TCR recognition of self peptide/MHC complexes is unclear. We have used induction of the early growth response gene 1 (Egr1) as an indicator of signal transduction in 3.L2 (I-Ek-restricted) T cells interacting with APC in the absence of exogenous antigen. The data show that Egr1 can be induced in 3.L2 T cells by TCR recognition of self peptides presented by I-Ek. However, a more transient induction of Egr1 can be induced in 3.L2 T cells interacting with dendritic cells derived from class II/beta2m double-deficient mice. Egr1 induction after T cell-APC contact was also observed in a freshly isolated polyclonal CD4 T cell population. The data suggest that self peptide/MHC recognition by the TCR induces a signal in T cells and that dendritic cells can also induce a more transient T cell signal by an MHC-independent mechanism.


DNA-Binding Proteins/metabolism , Histocompatibility Antigens/physiology , Immediate-Early Proteins , RNA, Messenger/metabolism , T-Lymphocytes/physiology , Transcription Factors/metabolism , Animals , Antigen-Presenting Cells/physiology , Antigens/physiology , Early Growth Response Protein 1 , Major Histocompatibility Complex/physiology , Mice , Peptides/metabolism
17.
Mol Immunol ; 39(11): 677-84, 2003 Jan.
Article En | MEDLINE | ID: mdl-12493643

IFN-gamma induced transcription of class II transactivator (CIITA), a major regulator of MHC class II gene expression, is directed by the CIITA type IV promoter. The IFN-gamma activation of the CIITA type IV promoter is mediated by STAT1 and IRF-1, which bind to the GAS and IRF-E of the promoter, respectively. We and others have determined that IRF-2, another member of the IRF family, also activates the CIITA type IV promoter, by binding to the IRF-E. Also, IRF-2 cooperates with IRF-1 to activate the promoter. DNA binding analyses determined that IRF-1 and IRF-2 can co-occupy the IRF-E of the CIITA type IV promoter. To further understand the mechanism of IRF-1 and IRF-2 cooperativity in the activation of CIITA type IV promoter, we characterized the binding of IRF-1 and IRF-2 to the CIITA IRF-E and mapped the domains of IRF-2 required for the cooperative transactivation. Off-rate experiments revealed that the IRF-2/IRF-E complex was more stable than the IRF-1/IRF-E complex and that the affinity of IRF-1 for the IRF-E was increased when IRF-1 co-occupied the IRF-E with IRF-2. Deletion analysis of functional domains of IRF-2 revealed that a previously described latent activation domain of IRF-2 was essential for IRF-2 transactivation and participated in cooperative activation of the CIITA promoter by IRF-1 and IRF-2. However, the DNA binding domain of IRF-2 was sufficient for cooperativity with IRF-1 in the activation of the CIITA type IV promoter. DNA binding assay demonstrated that, like the full-length IRF-2, the IRF-2 DNA binding domain could co-occupy the CIITA IRF-E with IRF-1.


DNA-Binding Proteins/metabolism , DNA/metabolism , Gene Expression Regulation/genetics , Nuclear Proteins , Phosphoproteins/metabolism , Promoter Regions, Genetic , Repressor Proteins , Trans-Activators/genetics , Transcription Factors , Animals , Binding Sites , DNA-Binding Proteins/genetics , Interferon Regulatory Factor-1 , Interferon Regulatory Factor-2 , Interferon-gamma/metabolism , Mice , Mice, Knockout
18.
J Immunol ; 170(1): 315-24, 2003 Jan 01.
Article En | MEDLINE | ID: mdl-12496415

Responses to partial agonist TCR signals include positive selection of thymocytes, survival of naive T cells, and homeostatic proliferation. As part of an effort to understand the molecular basis of these processes, we have determined how agonist and partial agonist ligands act differently to induce a change in gene expression. We have found that the early growth response gene 1 (Egr1) promoter is activated by agonist and partial agonist ligands, but the partial agonist induces 10-fold lower promoter activity. Both agonist and partial agonist ligands require all six serum response elements in the Egr1 promoter to reach maximum induction. Although slightly fewer cells respond to the partial agonist, all of the responding cells have reduced activity compared with the cells responding to agonist. The factors binding to the serum response elements of the Egr1 promoter form a ternary complex (TC) consisting of serum response factor and either Elk-1 or serum response factor accessory protein-1a. Formation of a stable TC and inducible promoter activity are both dependent on extracellular signal-related kinase activation. Examination of TC formation over time reveals that this complex is induced well by partial agonist ligands, but it is not sustained, whereas agonist stimulation induces longer lived TCs. Therefore, the data suggest that both agonist and partial agonist ligands can induce formation of multiple TC on the Egr1 promoter, but the ability of the agonist ligand to maintain these complexes for an extended time results in the increased potency of the agonist.


DNA-Binding Proteins/genetics , Gene Expression Regulation/immunology , Immediate-Early Proteins , Mitogen-Activated Protein Kinases/biosynthesis , Mitogen-Activated Protein Kinases/metabolism , Promoter Regions, Genetic/immunology , Receptors, Antigen, T-Cell/agonists , Receptors, Antigen, T-Cell/physiology , Signal Transduction/immunology , Transcription Factors/genetics , Animals , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Immunologic , Early Growth Response Protein 1 , Enzyme Activation/genetics , Enzyme Activation/immunology , Ligands , Luciferases/biosynthesis , Luciferases/genetics , Mice , Phosphorylation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets , Serum Response Element/immunology , Serum Response Factor/genetics , Serum Response Factor/metabolism , Signal Transduction/genetics , Substrate Specificity/genetics , Substrate Specificity/immunology , T-Lymphocytes/enzymology , T-Lymphocytes/metabolism , Transcription Factors/metabolism , ets-Domain Protein Elk-1 , ets-Domain Protein Elk-4
19.
J Immunol ; 169(4): 1713-20, 2002 Aug 15.
Article En | MEDLINE | ID: mdl-12165491

Early growth response gene 1 (Egr1) codes for a transcriptional regulator that contains a zinc-finger DNA binding domain. Egr1 expression is induced by a variety of extracellular stimuli including TCR-ligand interactions. Its pattern of expression in the thymus and dependence on ERK activation have led to speculation that it has a role in T cell development, but the exact nature of this role has been undefined. To more clearly define the role of Egr1 in thymocyte development, we have analyzed thymocytes from Egr1-deficient mice. We find that thymuses from Egr1-deficient mice contain twice as many cells as age-matched controls, and the increase in thymocyte number is apparent at the early CD4/CD8 double negative stage of development. Subsequent maturation to the CD4/CD8 double positive stage and survival of the double positive cells both appear normal in Egr1-deficient animals. We also find that Egr1 promotes positive selection of both CD4 and CD8 single positive cells without playing a major role in negative selection. Egr1 influences positive selection by enhancing expression of the helix-loop-helix inhibitor Id3 and the anti-apoptosis molecule bcl-2. Thus, Egr1 translates developmental signals into appropriate changes in gene expression at multiple stages of thymocyte development.


DNA-Binding Proteins/deficiency , Immediate-Early Proteins , Neoplasm Proteins , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Transcription Factors/deficiency , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Early Growth Response Protein 1 , Gene Expression Regulation, Developmental , Genes, T-Cell Receptor , Genes, bcl-2 , Inhibitor of Differentiation Proteins , Leukocyte Count , Mice , Mice, Inbred AKR , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , Up-Regulation
...