Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Eur J Med Chem ; 261: 115865, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37839342

The EGFRC797S mutation is a dominant mechanism of acquired resistance after the treatment of non-small cell lung cancer (NSCLC) with osimertinib in clinic. To date, there is no inhibitor approved to overcome the resistance caused by osimertinib. In this study, a series of compounds with phenylamino-pyrimidine scaffold deriving from osimertinib were designed, synthesized and evaluated as fourth-generation EGFRC797S-TK inhibitors. Consequently, compound Os30 exhibited potent inhibitory activities against both EGFRDel19/T790M/C797S TK and EGFRL858R/T790M/C797S TK with IC50 values of 18 nM and 113 nM, respectively. Moreover, Os30 can powerfully inhibit the proliferation of KC-0116 (BaF3-EGFRDel19/T790M/C797S) and KC-0122 (BaF3-EGFRL858R/T790M/C797S) cells. In addition, Os30 can suppress EGFR phosphorylation in a concentration-dependent manner in KC-0116 cells, arrest KC-0116 cells at G1 phase and induce the apoptosis of KC-0116 cells. More importantly, Os30 showed potent antitumor efficacy in the KC-0116 cells xenograft nude mice tumor model with the tumor growth inhibitory rate of 77.6% at a dosage of 40 mg/kg. These findings demonstrate that modification of osimertinib can discover new potent EGFRC797S-TK inhibitors, and compound Os30 is a potent fourth-generation EGFR inhibitor to treat NSCLC with EGFmRC797S mutation.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Protein Kinase Inhibitors/pharmacology , Lung Neoplasms/pathology , ErbB Receptors/genetics , Mutation , Mice, Nude , Aniline Compounds/pharmacology , Drug Resistance, Neoplasm
2.
Bioorg Med Chem Lett ; 91: 129381, 2023 07 15.
Article En | MEDLINE | ID: mdl-37336419

The clinical use of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer was limited by the drug resistance caused by EGFRC797S mutation. Therefore, in order to overcome the drug resistance, we designed and synthesized a series of 2-aminopyrimidine derivatives as EGFRC797S-TKIs. Among these compounds, compounds A5 and A13 showed significant anti-proliferative activity against the KC-0116 (EGFRdel19/T790M/C797S) cell line with high selectivity. A5 inhibited EGFR phosphorylation and induced apoptosis of KC-0116 cell, arrested KC-0116 cell at G2/M phase. Molecular docking results showed that A5 and brigatinib bind to EGFR in a similar pattern. In addition to forming two important hydrogen bonds with Met793 residue, A5 also formed a hydrogen bond with Lys745 residues, which may play an important role for the potent inhibitory activity against EGFRdel19/T790M/C797S. Based on these results, A5 turned out to be effective reversible EGFRC797S-TKIs which can be further developed.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors , Lung Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Mutation , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Drug Resistance, Neoplasm
3.
J Pharm Anal ; 12(4): 653-663, 2022 Aug.
Article En | MEDLINE | ID: mdl-36105166

MicroRNA-21 (miRNA-21) is highly expressed in various tumors. Small-molecule inhibition of miRNA-21 is considered to be an attractive novel cancer therapeutic strategy. In this study, fluoroquinolone derivatives A1-A43 were synthesized and used as miRNA-21 inhibitors. Compound A36 showed the most potent inhibitory activity and specificity for miRNA-21 in a dual-luciferase reporter assay in HeLa cells. Compound A36 significantly reduced the expression of mature miRNA-21 and increased the protein expression of miRNA-21 target genes, including programmed cell death protein 4 (PDCD4) and phosphatase and tensin homology deleted on chromosome ten (PTEN), at 10 µM in HeLa cells. The Cell Counting Kit-8 assay (CCK-8) was used to evaluate the antiproliferative activity of A36; the results showed that the IC50 value range of A36 against six tumor cell lines was between 1.76 and 13.0 µM. Meanwhile, A36 did not display cytotoxicity in BEAS-2B cells (lung epithelial cells from a healthy human donor). Furthermore, A36 significantly induced apoptosis, arrested cells at the G0/G1 phase, and inhibited cell-colony formation in HeLa cells. In addition, mRNA deep sequencing showed that treatment with A36 could generate 171 dysregulated mRNAs in HeLa cells, while the expression of miRNA-21 target gene dual-specificity phosphatase 5 (DUSP5) was significantly upregulated at both the mRNA and protein levels. Collectively, these findings demonstrated that A36 is a novel miRNA-21 inhibitor.

4.
Bioorg Chem ; 128: 106057, 2022 11.
Article En | MEDLINE | ID: mdl-35964503

The third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have accomplished impressive clinical achievements in the treatment of non-small-cell lung cancer (NSCLC). Nonetheless, the acquired drug resistance largely limits their clinical use. The tertiary C797S mutation in the kinase domain of EGFR is one of the major mechanisms responsible for the drug resistance. Therefore, much attention has been focused on the development of the fourth-generation EGFR-TKIs to target triple mutant epidermal growth factor receptor (EGFR) with C797S mutation. In this review, we outline the panorama of the fourth-generation EGFR-TKIs reported up to now with the attention paid on the design strategy, binding mode and antitumor activity of these EGFR-TKIs. We also discuss the challenges and prospects of the fourth-generation EGFR-TKIs.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , ErbB Receptors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/chemistry
5.
Bioorg Med Chem ; 66: 116803, 2022 07 15.
Article En | MEDLINE | ID: mdl-35561631

MicroRNA-21 is a carcinogenic microRNA, whose overexpression arises in a variety of tumor tissues. Hence, microRNA-21 a prospective target for cancer treatment, and regulation of microRNA-21 by small molecule inhibitors is deemed as a promising approach for tumor therapy. In this work, to discover potent microRNA-21 inhibitor, series of 4-(N-norfloxacin-acyl)aminobenzamides were designed and synthesized, and their inhibitory effects were appraised by utilizing dual luciferase reporter assays. The results indicated that compound A7 was the most efficient microRNA-21 small molecule inhibitor. What's more, A7 suppressed the migration of Hela cells and the colony formation of Hela and HCT-116 cells as well as promoted apoptosis of Hela cells. In the mechanism study, results of RT-qPCR certified that A7 could reduce the level of mature microRNA-21 via disrupting its expression at the transcriptional level of its primary form "pri-miR-21", which was distinct from most previous inhibitors directly binding with pre-miR-21. Noticeably, Western blotting and RT-qPCR uncovered A7 could upregulate the expression PTEN, EGR1 and SLIT2, which are the downstream functional targets of microRNA-21. These findings demonstrated that A7 was a promising microRNA-21 small molecule inhibitor and 4-(N-norfloxacin-acyl) aminobenzamide can serve as a new scaffold for discovery of potent microRNA-21 inhibitor.


Antineoplastic Agents , Benzamides , MicroRNAs , Norfloxacin , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Cell Proliferation , HCT116 Cells , HeLa Cells , Humans , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Norfloxacin/pharmacology
6.
J Med Chem ; 65(6): 4709-4726, 2022 03 24.
Article En | MEDLINE | ID: mdl-35254067

Drug resistance caused by epidermal growth factor receptor (EGFR) mutation has largely limited the clinical use of EGFR tyrosine kinase inhibitors (EGFR-TKIs) for the treatment of non-small-cell lung cancer (NSCLC). Herein, to overcome the intractable problem of drug resistance, proteolysis targeting chimeras (PROTACs) targeting EGFR mutants were developed by optimizing covalent EGFR ligands. Covalent or reversible covalent pyrimidine- or purine-containing PROTACs were designed, synthesized, and evaluated. As a consequence, covalent PROTAC CP17, with a novel purine-containing EGFR ligand, was discovered as a highly potent degrader against EGFRL858R/T790M and EGFRdel19, reaching the lowest DC50 values among all reported EGFR-targeting PROTACs. Furthermore, CP17 exhibited excellent cellular activity against the H1975 and HCC827 cell lines with high selectivity. Mechanism investigation indicated that the lysosome was involved in the degradation process. Importantly, the covalent binding strategy was proven to be an effective approach for the design of PROTACs targeting EGFRL858R/T790M, which laid the practical foundation for further development of potent EGFR-targeting PROTACs.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors , Ligands , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proteolysis , Purines/pharmacology
7.
Article Zh | WPRIM | ID: wpr-955478

MicroRNA-21(miRNA-21)is highly expressed in various tumors.Small-molecule inhibition of miRNA-21 is considered to be an attractive novel cancer therapeutic strategy.In this study,fluoroquinolone de-rivatives Al-A43 were synthesized and used as miRNA-21 inhibitors.Compound A36 showed the most potent inhibitory activity and specificity for miRNA-21 in a dual-luciferase reporter assay in HeLa cells.Compound A36 significantly reduced the expression of mature miRNA-21 and increased the protein expression of miRNA-21 target genes,including programmed cell death protein 4(PDCD4)and phos-phatase and tensin homology deleted on chromosome ten(PTEN),at 10 uM in HeLa cells.The Cell Counting Kit-8 assay(CCK-8)was used to evaluate the antiproliferative activity of A36;the results showed that the IC50 value range of A36 against six tumor cell lines was between 1.76 and 13.0 μM.Meanwhile,A36 did not display cytotoxicity in BEAS-2B cells(lung epithelial cells from a healthy human donor).Furthermore,A36 significantly induced apoptosis,arrested cells at the G0/G1 phase,and inhibited cell-colony formation in HeLa cells.In addition,mRNA deep sequencing showed that treatment with A36 could generate 171 dysregulated mRNAs in HeLa cells,while the expression of miRNA-21 target gene dual-specificity phosphatase 5(DUSP5)was significantly upregulated at both the mRNA and protein levels.Collectively,these findings demonstrated that A36 is a novel miRNA-21 inhibitor.

8.
Eur J Med Chem ; 208: 112781, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-32883633

Epidermal growth factor receptor (EGFR) is an important therapeutic target for the treatment of non-small cell lung cancer. A number of efficacious EGFR tyrosine kinase inhibitors have been developed. However, acquired drug resistance largely encumbered their clinical practicability. Therefore, there is an urgent need to develop new therapeutic regime. Herein, we designed and synthesized a set of EGFR-targeting small molecule PROTACs which showed promising efficacy. In particular, VHL-recruiting compound P3 showed potent anti-proliferative activity against HCC827 and H1975 cell lines with IC50 values of 0.83 and 203.01 nM, respectively. Furthermore, both EGFRdel19 and EGFRL858R/T790M could be significantly induced to be degraded under treatment of P3 with DC50 values of 0.51 and 126.2 nM, respectively. Compound P3 was able to dramatically suppress EGFR pathway signal transduction. Moreover, compound P3 could significantly induce cell apoptosis, arrest cell cycle and suppress cell colony formation. In addition, we identified that ubiquitination was indispensable in the degradation process, and found that the degradation was related to autophagy. Our work would provide an alternative approach for development of potentially effective EGFR degraders and give a new clue for investigation of PROTAC-induced protein degradation.


Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Proteolysis/drug effects , Purines/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Lenalidomide/analogs & derivatives , Lenalidomide/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Purines/chemical synthesis , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
9.
Eur J Med Chem ; 189: 112061, 2020 Mar 01.
Article En | MEDLINE | ID: mdl-31951960

Epidermal growth factor receptor (EGFR), a member of the HER family, is closely related to the development of multiple cancers. Herein, we report the discovery of small molecule EGFR degraders based on the proteolysis targeting chimera (PROTAC) strategy. In the present study, 13 EGFR degraders containing pyrido[3,4-d] pyrimidine moiety were designed and synthesized. Promising PROTACs 2 and 10 induced degradation of EGFR in HCC827 cells with the DC50 values of 45.2 and 34.8 nM, respectively. Cellular protein-controlling machinery ubiquitin proteasome system (UPS) was involved in the degradation process. Furthermore, the degraders 2 and 10 could significantly induce the apoptosis of HCC827 cells and arrest the cells in G1 phase. These findings demonstrated that compounds 2 and 10 could serve as effective EGFRdel19-targeting degraders in HCC827 cells. v.


Antineoplastic Agents/pharmacology , Proteolysis/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , ErbB Receptors/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Pyridines/chemical synthesis , Pyrimidines/chemical synthesis
...