Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Magn Reson ; 361: 107652, 2024 Apr.
Article En | MEDLINE | ID: mdl-38457937

Precise radiation guided by oxygen images has demonstrated superiority over the traditional radiation methods. Electron paramagnetic resonance (EPR) imaging has proven to be the most advanced oxygen imaging modality. However, the main drawback of EPR imaging is the long scan time. For each projection, we usually need to collect the projection many times and then average them to achieve high signal-to-noise ratio (SNR). One approach to fast scan is to reduce the repeating time for each projection. While the projections would be noisy and thus the traditional commonly-use filtered backprojection (FBP) algorithm would not be capable of accurately reconstructing images. Optimization-based iterative algorithms may accurately reconstruct images from noisy projections for they may incorporate prior information into optimization models. Based on the total variation (TV) algorithms for EPR imaging, in this work, we propose a directional TV (DTV) algorithm to further improve the reconstruction accuracy. We construct the DTV constrained, data divergence minimization (DTVcDM) model, derive its Chambolle-Pock (CP) solving algorithm, validate the correctness of the whole algorithm, and perform evaluations via simulated and real data. The experimental results show that the DTV algorithm outperforms the existing TV and FBP algorithms in fast EPR imaging. Compared to the standard FBP algorithm, the proposed algorithm may achieve 10 times of acceleration.


Algorithms , Imaging, Three-Dimensional , Electron Spin Resonance Spectroscopy/methods , Phantoms, Imaging , Imaging, Three-Dimensional/methods , Oxygen , Image Processing, Computer-Assisted/methods
2.
Med Phys ; 50(9): 5568-5584, 2023 Sep.
Article En | MEDLINE | ID: mdl-36934310

BACKGROUND: With the development of low-dose computed tomography (CT), incomplete data reconstruction has been widely concerned. The total variation (TV) minimization algorithm can accurately reconstruct images from sparse or noisy data. PURPOSE: However, the traditional TV algorithm ignores the direction of structures in images, leading to the loss of edge information and block artifacts when the object is not piecewise constant. Since the anisotropic information can facilitate preserving the edge and detail information in images, we aim to improve the TV algorithm in terms of reconstruction accuracy via this approach. METHODS: In this paper, we propose an adaptive-weighted high order total variation (awHOTV) algorithm. We construct the second order TV-norm using the second order gradient, adapt the anisotropic edge property between neighboring image pixels, adjust the local image-intensity gradient to keep edge information, and design the corresponding Chambolle-Pock (CP) solving algorithm. Implementing the proposed algorithm, comprehensive studies are conducted in the ideal projection data experiment where the Structural similarity (SSIM), Root Mean Square Error (RMSE), Contrast to noise ratio (CNR), and modulation transform function (MTF) curves are utilized to evaluate the quality of reconstructed images in statism, structure, spatial resolution, and contrast, respectively. In the noisy data experiment, we further use the noise power spectrum (NPS) curve to evaluate the reconstructed images and compare it with other three algorithms. RESULTS: We use the 2D slice in the XCAT phantom, 2D slice in TCIA Challenge data and FORBILD phantom as simulation phantoms and use real bird data for real verification. The results show that, compared with the traditional TV and FBP algorithms, the awHOTV has better performance in terms of RMSE, SSIM, and Pearson correlation coefficient (PCC) under the projected data with different sparsity. In addition, the awHOTV algorithm is robust against the noise of different intensities. CONCLUSIONS: The proposed awHOTV method can reconstruct the images with high accuracy under sparse or noisy data. The awHOTV solves the strip artifacts caused by sparse data in the FBP method. Compared with the TV method, the awHOTV can effectively suppress block artifacts and has good detail protection ability.


Algorithms , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Artifacts , Computer Simulation , Image Processing, Computer-Assisted/methods
3.
Opt Express ; 30(2): 2963-2980, 2022 Jan 17.
Article En | MEDLINE | ID: mdl-35209426

Interior tomography by rotary computed tomography (RCT) is an effective method to improve the detection efficiency and achieve high-resolution imaging for the region of interest (ROI) within a large-scale object. However, because only the X-rays through the ROI can be received by detector, the projection data is inevitably truncated, resulting in truncation artifacts in the reconstructed image. When the ROI is totally within the object, the solution of the problem is not unique, which is named interior problem. Fortunately, projection completion (PC) is an effective technique to solve the interior problem. In this study, we proposed a multi source translation CT based PC method (mSTCT-PC) to cope with the interior problem. Firstly, mSTCT-PC employs multi-source translation to sparsely obtain the global projection which covered the whole object. Secondly, the sparse global projection is utilized to fill up the truncated projection of ROI. The global projection and truncated projection are obtained under the same geometric parameters. Therefore, it omits the registration of projection. To verify the feasibility of this method, simulation and practical experiments were implemented. Compared with the results of ROI reconstructed by filtered back-projection (FBP), simultaneous iterative reconstruction technique-total variation (SIRT-TV) and the multi-resolution based method (mR-PC), the proposed mSTCT-PC is good at mitigating truncation artifacts, preserving details and improving the accuracy of ROI images.

...