Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
2.
Nanomicro Lett ; 13(1): 166, 2021 Aug 05.
Article En | MEDLINE | ID: mdl-34351516

In the applications of large-scale energy storage, aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature. However, carrier ions always exhibit huge hydrated radius in aqueous electrolyte, which brings difficulty to find suitable host materials that can achieve highly reversible insertion and extraction of cations. Owing to open three-dimensional rigid framework and facile synthesis, Prussian blue analogues (PBAs) receive the most extensive attention among various host candidates in aqueous system. Herein, a comprehensive review on recent progresses of PBAs in aqueous batteries is presented. Based on the application in different aqueous systems, the relationship between electrochemical behaviors (redox potential, capacity, cycling stability and rate performance) and structural characteristics (preparation method, structure type, particle size, morphology, crystallinity, defect, metal atom in high-spin state and chemical composition) is analyzed and summarized thoroughly. It can be concluded that the required type of PBAs is different for various carrier ions. In particular, the desalination batteries worked with the same mechanism as aqueous batteries are also discussed in detail to introduce the application of PBAs in aqueous systems comprehensively. This report can help the readers to understand the relationship between physical/chemical characteristics and electrochemical properties for PBAs and find a way to fabricate high-performance PBAs in aqueous batteries and desalination batteries.

4.
Nanomicro Lett ; 13(1): 139, 2021 Jun 10.
Article En | MEDLINE | ID: mdl-34138392

Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.

5.
Angew Chem Int Ed Engl ; 60(34): 18430-18437, 2021 Aug 16.
Article En | MEDLINE | ID: mdl-34038605

The sodium dual ion battery (Na-DIB) technology is proposed as highly promising alternative over lithium-ion batteries for the stationary electrochemical energy-storage devices. However, the sluggish reaction kinetics of anode materials seriously impedes their practical implementation. Herein, a Na-DIB based on TiSe2 -graphite is reported. The high diffusion coefficient of Na-ions (3.21×10-11 -1.20×10-9  cm2 s-1 ) and the very low Na-ion diffusion barrier (0.50 eV) lead to very fast electrode kinetics, alike in conventional surface capacitive storage systems. In-situ investigations reveal that the fast Na-ion diffusion involves four insertion stage compositions. A prototype cell shows a reversible capacity of 81.8 mAh g-1 at current density of 100 mA g-1 , excellent stability with 83.52 % capacity retention over 200 cycles and excellent rate performance, suggesting its potential for next-generation large scale high-performance stationary energy storage systems.

6.
Dalton Trans ; 50(19): 6520-6527, 2021 May 18.
Article En | MEDLINE | ID: mdl-33908989

In order to meet the growing demand of energy storage for the power grid, aqueous NH4+ batteries are attracting increasing attention as a promising alternative due to their environmental significance, abundant resources, and fast diffusion ability. In this work, FeFe(CN)6 (FeHCF) is synthesized as a cathode material for aqueous NH4+ batteries and Fe2(SO4)3 is utilized as a kind of functional additive in the electrolyte based on the "common ion effect" to enhance its electrochemical performance. The results indicate that the initial capacity of FeHCF is about 80 mA h g-1 with a coulombic efficiency of 97.8%. The retention rate can attain 96.3% within nearly 1000 cycles. Multivariate analysis methods are carried out to characterize the mechanism of FeHCF in aqueous NH4+ batteries. From the practical standpoint, FeHCF has outstanding cycling stability and rate capability, making it feasible to be applied in the power grid.

...