Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364473

RESUMEN

Ischemic stroke is a difficult-to-treat brain disease that may be attributed to a limited therapeutic time window and lack of effective clinical drugs. Nasal-brain administration is characterized by low systemic toxicity and is a direct and non-invasive brain targeting route. Preliminary studies have shown that the volatile oil of Chaxiong (VOC) has an obvious anti-ischemic stroke effect. In this work, we designed a nanoemulsion thermosensitive in situ gel (VOC-NE-ISG) loaded with volatile oil of Chaxiong for ischemia via intranasal delivery to rat brain treatment of cerebral ischemic stroke. The developed VOC-NE-ISG formulation has a suitable particle size of 21.02 ± 0.25 nm and a zeta potential of -20.4 ± 1.47 mV, with good gelling ability and prolonged release of the five components of VOC. The results of in vivo pharmacokinetic studies and brain targeting studies showed that intranasal administration of VOC-NE-ISG could significantly improve the bioavailability and had excellent brain-targeting efficacy of nasal-to-brain delivery. In addition, the results of pharmacodynamics experiments showed that both VOC-NE and VOC-NE-ISG could reduce the neurological deficit score of model rats, reducing the size of cerebral infarction, with a significant effect on improving ischemic stroke. Overall, VOC-NE-ISG may be a promising intranasal nanomedicine for the effective treatment of ischemic stroke.


Asunto(s)
Ligusticum , Nanopartículas , Aceites Volátiles , Accidente Cerebrovascular , Compuestos Orgánicos Volátiles , Animales , Ratas , Medicina Tradicional China , Aceites Volátiles/farmacología , Compuestos Orgánicos Volátiles/farmacología , Geles/farmacología , Administración Intranasal , Tamaño de la Partícula , Encéfalo , Emulsiones/farmacología
2.
Drug Des Devel Ther ; 16: 1407-1431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586185

RESUMEN

Background: Ibuprofen (IBU), a nonsteroidal anti-inflammatory drug, shows poor gastrointestinal absorption due to its low solubility, which limits its clinical application. Objective: In the present study, we aimed to develop thermosensitive gel-mediated ibuprofen-solid lipid nanoparticles (IBU-SLN-ISG) to improve the dissolution and bioavailability of IBU after rectal delivery. Methods: IBU-loaded SLNs (IBU-SLNs) were developed and optimized applying Box-Behnken design. The optimized IBU-SLNs were characterized by physicochemical parameters and morphology. Then, the optimized IBU-SLNs was incorporated into the gel and characterized for gel properties and rheology and investigated its release in vitro, pharmacokinetics in vivo, rectal irritation and rectal retention time. Results: The optimized SLNs had an EE of 90.74 ± 1.40%, DL of 11.36 ± 1.20%, MPS of 166.77 ± 2.26 nm, PDI of 0.27 ± 0.08, and ZP of -21.00 ± 0.59 mV. The FTIR spectra confirmed successful encapsulation of the drug inside the nanoparticle as only peaks responsible for the lipid could be identified. This corroborated well with XRD spectra, which showed a completely amorphous state of the IBU-SLNs as compared to the crystalline nature of the pure drug. The gelation temperature of the prepared IBU-SLN-ISG was 33.30 ± 0.78°C, the gelation time was 14.67 ± 2.52 s, the gel strength was 54.00 ± 1.41 s, and the mucoadhesion was (11.54±0.37) × 102dyne/cm2. The in vitro results of IBU-SLNs and IBU-SLN-ISG showed a biphasic release pattern with initial burst release followed by sustained release. More importantly, IBU-SLN-ISG produced much better absorption of IBU and improved bioavailability in rats. In addition, IBU-SLN-ISG caused no irritation or damage to rectal tissues, and could be retained in the rectum for a long time. Conclusion: Thermosensitive in situ gel loaded with IBU-solid lipid nanoparticles might be further developed as a more convenient and effective rectal dosage form.


Asunto(s)
Ibuprofeno , Nanopartículas , Animales , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Ibuprofeno/química , Liposomas , Nanopartículas/química , Tamaño de la Partícula , Ratas , Recto
3.
Zhongguo Zhong Yao Za Zhi ; 46(4): 972-980, 2021 Feb.
Artículo en Chino | MEDLINE | ID: mdl-33645104

RESUMEN

This study aims to establish a method for the determination of the concentration of five main components of phthalide target areas of Chaxiong(CPTA) and its inclusion of ß-CD in the plasma of rats, and determine the pharmacokinetic parameters, absolute bioavailability and relative bioavailability of CPTA/ß-CD inclusion compound in vivo. The plasma concentrations of senkyunolide A, N-butylphthalide, new osthol lactone, Z-ligustilide and butenyl phthalide were determined with UPLC-MS/MS. The content determination was conducted at the chromatographic conditions as follows: Shim-pack GIST C_(18)-AQ HP column(2.1 mm×100 mm, 3 µm), mobile phase of 0.1% formic acid solution(A)-acetonitrile(B), gradient elution, flow rate of 0.3 mL·min~(-1), column temperature of 35 ℃ and injection volume of 2 µL. The mass spectra were obtained with electrospray ion source(ESI), positive ion mode and multi reaction monitoring. CPTA/ß-CD inclusion compound was prepared by grinding method, DAS 2.0 software was used to model the data, and the absolute bioavailability of CPTA and relative bioavailability of inclusion compound were calculated. Finally, the methods for the determination of five components of senkyunolide A, N-butylphthalide, new osthol lactone, Z-ligustilide and butenyl phthalide in CPTA, were successfully established. The linear relationship among the five components was good within their respective ranges, r>0.99. The absolute bioavailability of the five components in rats was 22.30%, 16.32%, 21.90%, 10.16% and 12.43%, respectively. After CPTA/ß-CD inclusion was prepared, the relative bioavailability of the five components was 138.69%, 198.39%, 218.01%, 224.54% and 363.55%, respectively, significantly improved. This method is rapid, accurate and sensitive, so it is suitable for the pharmacokinetic study of extracts in traditional Chinese medicine and their preparations.


Asunto(s)
Espectrometría de Masas en Tándem , Animales , Benzofuranos , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...