Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39038357

RESUMEN

Objective: This work explored the relationship between nosocomial infection-related factors and inflammatory factors after total hip replacement (THA). Methods: A total of 296 THA patients treated in the Zhejiang hospital from 2018 to 2022 were analyzed retrospectively. Clinical data of the patients were collected, and the nosocomial infection rate, infection site, infectious pathogen, related risk factors, and postoperative follow-up were statistically analyzed. Disease types included avascular necrosis of the femoral head, osteoarthritis, and femoral neck fracture. The troponin (Tn), blood routine, blood types, heparin-binding protein (HBP), thyroid function, thromboelastogram (TEG), brain natriuretic peptide (BNP), bone metabolism-related markers, glycosylated hemoglobin (GHb), and other indicators in three types of patients before and after surgery were analyzed. Results: 37 cases (12.5%) had necrosis of the femoral head, 105 cases had osteoarthritis (35.47%), and femoral neck fracture was observed in 154 cases (52.03%). The main infection sites were the respiratory tract, urinary tract, deep incision, and tissue infection. There were 8 pathogenic bacteria strains, including gram-positive and gram-negative bacteria. The BNP content in plasma was highly decreased after treatment [RR: 0.353 (95% CI: 0.234-0.533), P < .001]. HBP in patients with postoperative infection was notably higher than that in patients without infection [RR: 0.241 (95% CI: 0.161-0.361), P < .001]. The blood glucose of both the diabetic group and the non-diabetic group was remarkably decreased after surgery [RR: 0.367 (95% CI: 0.233-0.461), P < .001]. The level of triiodothyronine (T3) showed a downward trend, while both tetraiodothyronine (T4) and thyroid stimulating hormone (TSH) were at normal levels. There were 15 cases of postoperative loosening, 6 cases of femoral shaft loosening, and 9 cases of acetabulum loosening. Conclusion: THA can regulate and maintain the balance of inflammatory cytokines, and taking preventive measures against risk factors can effectively reduce nosocomial infection, which is of great significance in improving the quality of medical treatment.

2.
Biosensors (Basel) ; 14(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38391978

RESUMEN

Bacterial infections continue to pose a significant global health challenge, with the emergence of multidrug-resistant (MDR) bacteria and biofilms further complicating treatment options. The rise of pan-resistant bacteria, coupled with the slow development of new antibiotics, highlights the urgent need for new therapeutic strategies. Nanotechnology-based biosensors offer fast, specific, sensitive, and selective methods for detecting and treating bacteria; hence, it is a promising approach for the diagnosis and treatment of MDR bacteria. Through mechanisms, such as destructive bacterial cell membranes, suppression of efflux pumps, and generation of reactive oxygen species, nanotechnology effectively combats bacterial resistance and biofilms. Nano-biosensors and related technology have demonstrated their importance in bacteria diagnosis and treatment, providing innovative ideas for MDR inhibition. This review focuses on multiple nanotechnology approaches in targeting MDR bacteria and eliminating antimicrobial biofilms, highlighting nano-biosensors via photodynamics-based biosensors, eletrochemistry biosensors, acoustic-dynamics sensors, and so on. Furthermore, the major challenges, opportunities of multi-physical-field biometrics-based biosensors, and relevant nanotechnology in MDR bacterial theranostics are also discussed. Overall, this review provides insights and scientific references to harness the comprehensive and diverse capabilities of nano-biosensors for precise bacteria theranostics and MDR inhibition.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Humanos , Bacterias/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple
3.
Biosensors (Basel) ; 13(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37366966

RESUMEN

Lung cancer-specific clinical specimens, such as alveolar lavage fluid, are typically identified by microscopic biopsy, which has limited specificity and sensitivity and is highly susceptible to human manipulation. In this work, we present an ultrafast, specific, and accurate cancer cell imaging strategy based on dynamically self-assembling fluorescent nanoclusters. The presented imaging strategy can be used as an alternative or a complement to microscopic biopsy. First, we applied this strategy to detect lung cancer cells, and established an imaging method that can rapidly, specifically, and accurately distinguish lung cancer cells (e.g., A549, HepG2, MCF-7, Hela) from normal cells (e.g., Beas-2B, L02) in 1 min. In addition, we demonstrated that the dynamic self-assembly process that fluorescent nanoclusters formed by HAuCl4 and DNA are first generated at the cell membrane and then gradually enter the cytoplasm of lung cancer cells in 10 min. In addition, we validated that our method enables the rapid and accurate imaging of cancer cells in alveolar lavage fluid samples from lung cancer patients, whereas no signal was observed in the normal human samples. These results indicate that the dynamic self-assembling fluorescent nanoclusters-based cancer cells imaging strategy could be an effective non-invasive technique for ultrafast and accurate cancer bioimaging during liquid biopsy, thus providing a safe and promising cancer diagnostic platform for cancer therapy.


Asunto(s)
Neoplasias Pulmonares , Humanos , Células HeLa , Colorantes Fluorescentes , Biopsia Líquida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA