Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
Microb Cell Fact ; 23(1): 94, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38539197

BACKGROUND: Surfactin, a green lipopeptide bio-surfactant, exhibits excellent surface, hemolytic, antibacterial, and emulsifying activities. However, a lack of clear understanding of the synthesis regulation mechanism of surfactin homologue components has hindered the customized production of surfactin products with different biological activities. RESULTS: In this study, exogenous valine and 2-methylbutyric acid supplementation significantly facilitated the production of C14-C15 surfactin proportions (up to 75% or more), with a positive correlation between the homologue proportion and fortified concentration. Subsequently, the branched-chain amino acid degradation pathway and the glutamate synthesis pathway are identified as critical pathways in regulating C14-C15 surfactin synthesis by transcriptome analysis. Overexpression of genes bkdAB and glnA resulted in a 1.4-fold and 1.3-fold increase in C14 surfactin, respectively. Finally, the C14-rich surfactin was observed to significantly enhance emulsification activity, achieving an EI24 exceeding 60% against hexadecane, while simultaneously reducing hemolytic activity. Conversely, the C15-rich surfactin demonstrated an increase in both hemolytic and antibacterial activities. CONCLUSION: This study presents the first evidence of a potential connection between surfactin homologue synthesis and the conversion of glutamate and glutamine, providing a theoretical basis for targeting the synthesis regulation and structure-activity relationships of surfactin and other lipopeptide compounds.


Fatty Acids , Surface-Active Agents , Fatty Acids/metabolism , Surface-Active Agents/metabolism , Glutamic Acid/metabolism , Lipopeptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Peptides, Cyclic/chemistry , Bacillus subtilis/genetics
2.
Talanta ; 273: 125935, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38503123

Target specificity, one of aptamer characteristics that determine recognition efficiency of biosensors, is generally considered to be an intrinsic property of aptamer. However, a high-affinity aptamer may have additional target binding specificity, little is known about the specificity of aptamer binding to multiple targets, which may result in false-positive results that hinder the accuracy of detection. Herein, an aptamer OBA3 with dual target ochratoxin A (OTA) and norfloxacin (NOR) was used as an example to explore the binding specificity mechanism and developed rapid fluorescent aptasensing methods. The nucleotide 15th T of aptamer OBA3 was demonstrated to be critical for specificity and affinity binding of target OTA via site-saturation mutagenesis. Substituting the 15th T base for C base could directly improve recognition specificity of aptamer for NOR and remove the binding affinity for OTA. The combination of π-π stacking interactions, salt bridges and hydrogen bonds between loop pocket of aptamer and quinolone skeleton, piperazinyl group may contributes to the fluoroquinolone antibiotics (NOR and difloxacin)-aptamer recognition interaction. Based on this understanding, a dual-aptamer fluorescent biosensor was fabricated for simultaneous detection of OTA and NOR, which has a linear detection range of 50-6000 nM with a detection limit of 31 nM for OTA and NOR. Combined with T15C biosensor for eliminating interference of OTA, the assay was applied to milk samples with satisfactory recovery (94.06-100.93%), which can achieve detection of OTA and NOR individually within 40 min.


Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Animals , Norfloxacin , Milk/chemistry , Limit of Detection , Aptamers, Nucleotide/chemistry , Ochratoxins/analysis , Coloring Agents , Biosensing Techniques/methods
3.
Biotechnol Adv ; 72: 108346, 2024.
Article En | MEDLINE | ID: mdl-38518963

Most enzyme modification strategies focus on designing the active sites or their surrounding structures. Interestingly, a large portion of the enzymes (60%) feature active sites located within spacious cavities. Despite recent discoveries, cavity-mediated enzyme engineering remains crucial for enhancing enzyme properties and unraveling folding-unfolding mechanisms. Cavity engineering influences enzyme stability, catalytic activity, specificity, substrate recognition, and docking. This article provides a comprehensive review of various cavity engineering models for enzyme modification, including cavity creation, filling, and reshaping. Additionally, it also discusses feasible tools for geometric analysis, functional assessment, and modification of cavities, and explores potential future research directions in this field. Furthermore, a promising universal modification strategy for cavity engineering that leverages state-of-the-art technologies and methodologies to tailor cavities according to the specific requirements of industrial production conditions is proposed.


Protein Engineering , Protein Engineering/methods , Enzyme Stability , Catalytic Domain
4.
Molecules ; 29(3)2024 Jan 29.
Article En | MEDLINE | ID: mdl-38338377

A novel water-soluble Amygdalus persica L. flowers polysaccharide (APL) was successfully isolated and purified from Amygdalus persica L. flowers by hot water extraction. Its chemical components and structure were analyzed by IR, GC-MS, and HPLC. APL consisted of rhamnose, arabinose, mannose and glucose in a molar ratio of 0.17:0.034:1.0:0.17 with an average molecular weight of approximately 208.53 kDa and 15.19 kDa. The antioxidant activity of APL was evaluated through radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 3-ethylbenzthiazoline-6-sulfonic acid (ABTS), Hydroxyl radical scavenging, Superoxide radical scavenging, and the reducing power activity was also determined in vitro. Besides, in vivo antioxidant experiment, zebrafish (Danio rerio) embryos were treated with different concentrations of APL and then exposed to LPS to induce oxidative stress. Treatment with APL at 50 or 100 µg/mL significantly reduced LPS-induced oxidative stress in the zebrafish, demonstrating the strong antioxidant activity of APL. Moreover, the effect of APL on zebrafish depigmentation was tested by analyzing the tyrosinase activity and melanin content of zebrafish embryos. APL showed a potential reduction in the total melanin content and tyrosinase activity after treatment. This work provided important information for developing a potential natural antioxidant in the field of cosmetics and food.


Antioxidants , Zebrafish , Animals , Antioxidants/chemistry , Monophenol Monooxygenase , Lipopolysaccharides , Melanins/analysis , Flowers/chemistry , Water/analysis
5.
J Agric Food Chem ; 72(2): 1213-1227, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38183306

ß-1,4-Endoxylanase is the most critical hydrolase for xylan degradation during lignocellulosic biomass utilization. However, its poor stability and activity in hot and alkaline environments hinder its widespread application. In this study, BhS7Xyl from Bacillus halodurans S7 was improved using a computer-aided design through isothermal compressibility (ßT) perturbation engineering and by combining three thermostability prediction algorithms (ICPE-TPA). The best variant with remarkable improvement in specific activity, heat resistance (70 °C), and alkaline resistance (both pH 9.0 and 70 °C), R69F/E137M/E145L, exhibited a 4.9-fold increase by wild-type in specific activity (1368.6 U/mg), a 39.4-fold increase in temperature half-life (458.1 min), and a 57.6-fold increase in pH half-life (383.1 min). Furthermore, R69F/E137M/E145L was applied to the hydrolysis of agricultural waste (corncob and hardwood pulp) to efficiently obtain a higher yield of high-value xylooligosaccharides. Overall, the ICPE-TPA strategy has the potential to improve the functional performance of enzymes under extreme conditions for the high-value utilization of lignocellulosic biomass.


Bacillus , Hot Temperature , Alkalies , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Hydrolysis , Enzyme Stability , Hydrogen-Ion Concentration
6.
Int J Food Microbiol ; 413: 110589, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38281434

Knowledge of the metabolism of functional enzymes is the key to accelerate the transformation and utilization of raw materials during high temperature Daqu (HTD) manufacturing. However, the metabolic contribution of raw materials-wheat is always neglected. In this research, the relationship between the metabolism of wheat and microorganisms was investigated using physicochemical and sequencing analysis method. Results showed that the process of Daqu generation was divided into three stages based on temperature. In the early stage, a positive correlation was found between Monascus, Rhizopus and glucoamylase metabolism (r > 0.8, p < 0.05). Meanwhile, the glucoamylase metabolism in wheat occupied 63.8 % of the total matrix at the day 4. In the middle to later stages, the wheat metabolism of proteases, α-amylases and lipases in gradually reached their peak. Additionally, Lactobacillus and α-amylases presented a positive correlation (r > 0.7, p < 0.05), and the α-amylases metabolism in wheat occupied 22.18 % of the total matrix during the same time period. More importantly, the changes of enzyme activity metabolic pathway in wheat and microorganism were reflected by respiratory entropy (RQ). Overall, these results guide the choice of substrate during Daqu production.


Bacteria , Microbiota , Fermentation , Bacteria/genetics , Bacteria/metabolism , Triticum/metabolism , Glucan 1,4-alpha-Glucosidase/metabolism , Temperature , alpha-Amylases/metabolism , Alcoholic Beverages
7.
Food Res Int ; 176: 113824, 2024 Jan.
Article En | MEDLINE | ID: mdl-38163724

This research paper focuses on the application of the "Design-Build-Test-Learn" framework to design and evaluate a synthetic microbial community aimed at studying the impact of Lactic Acid Bacteria (LAB) interactions and fitness on the formation of biogenic amines (BAs) in Chinese rice wine (CRW). The study reveals a close correlation between the assembly model of LAB and the accumulation of BAs in CRW, and multiple interactions were observed between amine-producing and non-amine-producing LAB, including commensalism, amensalism, and competition. The commensalism among amine-producing LAB was found to promote BAs accumulation through metabolic cross-feeding of amino acids. Moreover, the higher-order interaction community was designed to regulate the BAs formation effectively. For instance, the interference of Lactiplantibacillus plantarum (ACBC271) resulted in the elimination of amine-producing LAB viability, resulting in a 22% decrease (not exceeding 43.54 mg/L) in the total amount of BAs. Simulation of community dynamics models further suggests that LAB with quantitative social interactions can effectively control LAB accumulation in CRW by forecasting fluctuation in BAs generation through fitness competition and metabolic interference. Overall, this study provides valuable insights into the complex interaction networks within microbial communities in traditional fermentation ecosystems. It also proposes a novel approach for quality control of nitrogen food safety factors in fermented foods.


Lactobacillales , Wine , Wine/analysis , Ecosystem , Biogenic Amines/analysis , Lactobacillales/metabolism , China
8.
J Agric Food Chem ; 72(3): 1640-1650, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38213280

The O-glycosylation of polyphenols for the synthesis of glycosides has garnered substantial attention in food research applications. However, the practical utility of UDP-glycosyltransferases (UGTs) is significantly hindered by their low catalytic efficiency and suboptimal regioselectivity. The concurrent optimization of the regioselectivity and activity during the glycosylation of polyphenols presents a formidable challenge. Here, we addressed the long-standing activity-regioselectivity tradeoff in glycosyltransferase UGTBL1 through systematic enzyme engineering. The optimal combination of mutants, N61S/I62M/D63W/A208R/P218W/R282W (SMWRW1W2), yielded a 6.1-fold improvement in relative activity and a 17.3-fold increase in the ratio of gastrodin to para-hydroxybenzyl alcohol-4'-O-ß-glucoside (with 89.5% regioselectivity for gastrodin) compared to those of the wild-type enzyme and ultimately allowed gram-scale production of gastrodin (1,066.2 mg/L) using whole-cell biocatalysis. In addition, variant SMWRW1W2 exhibited a preference for producing phenolic glycosides from several substrates. This study lays the foundation for the engineering of additional UGTs and the practical applications of UGTs in regioselective retrofitting.


Benzyl Alcohols , Glycosides , Glycosyltransferases , Uridine Diphosphate , Glucosides , Phenols , Polyphenols
9.
Compr Rev Food Sci Food Saf ; 22(6): 5020-5062, 2023 11.
Article En | MEDLINE | ID: mdl-37823801

Alcoholic beverages have been enjoyed worldwide as hedonistic commodities for thousands of years. The unique quality and flavor are attributed to the rich microbiota and nutritional materials involved in fermentation. However, the metabolism of these microbiota can also introduce toxic compounds into foods. Nitrogen-derived metabolic hazards (NMH) are toxic metabolic hazards produced by microorganisms metabolizing nitrogen sources that can contaminate alcoholic beverages during fermentation and processing. NMH contamination poses a risk to dietary safety and human health without effective preventive strategies. Existing literature has primarily focused on investigating the causes of NMH formation, detection methods, and abatement techniques for NMH in fermentation end-products. Devising effective process regulation strategies represents a major challenge for the alcoholic beverage industry considering our current lack of understanding regarding the processes whereby NMH are generated, real-time and online detection, and the high degradation rate after NMH formation. This review summarizes the types and mechanisms of nitrogenous hazard contamination, the potential risk points, and the analytical techniques to detect NMH contamination. We discussed the changing patterns of NMH contamination and effective strategies to prevent contamination at different stages in the production of alcoholic beverages. Moreover, we also discussed the advanced technologies and methods to control NMH contamination in alcoholic beverages based on intelligent monitoring, synthetic ecology, and computational assistance. Overall, this review highlights the risks of NMH contamination during alcoholic beverage production and proposes promising strategies that could be adopted to eliminate the risk of NMH contamination.


Alcoholic Beverages , Diet , Humans , Alcoholic Beverages/analysis , Fermentation
10.
Heliyon ; 9(8): e18735, 2023 Aug.
Article En | MEDLINE | ID: mdl-37560635

Folium Sennae are widely used around the world, mainly in purging and removal of endogenous active substances, such as anthraquinone and its derivatives. However, the potential toxicity of anthraquinones to the liver, kidney, and intestinal limits the application of Folium Sennae. In this study, we aimed at safe regulation of Folium Sennae to degrade anthraquinones, boosting medicinal properties and reducing toxicity and potency with Monascus fermentation. Monascus strains H1102 for Folium Sennae fermentation were selected as the initial strain which was capable of producing high yields of functional pigment and low yields of hazardous citrinin. The anthraquinone degradation rate reached 41.2%, with 212.2 U mL-1 of the pigment and approximately 0.038 mg L-1 of the citrinin under optimal fermentation conditions followed by response surface streamlining, which met the requirements of reducing toxicity, increasing efficiency of Monascus fermented Folium Sennae. Furthermore, the Monascus/Folium Sennae culture had no observable toxic effect on HK-2 and L-02 cells in vitro and further inhibited cell apoptosis and necrosis. Overall, our results showed that Monascus fermentation could provide an alternative strategy for toxicity reduction of herbal medicines as well as efficacy enhancement.

11.
Crit Rev Food Sci Nutr ; : 1-15, 2023 May 26.
Article En | MEDLINE | ID: mdl-37243343

High pressure processing (HPP) offers the benefits of safety, uniformity, energy-efficient, and low waste, which is widely applied for microbial inactivation and shelf-life extension for foods. Over the past forty years, HPP has been extensively researched in the food industry, enabling the inactivation or activation of different enzymes in future food by altering their molecular structure and active site conformation. Such activation or inactivation of enzymes effectively hinders the spoilage of food and the production of beneficial substances, which is crucial for improving food quality. This paper reviews the mechanism in which high pressure affects the stability and activity of enzymes, concludes the roles of key enzymes in the future food processed using high pressure technologies. Moreover, we discuss the application of modified enzymes based on high pressure, providing insights into the future direction of enzyme evolution under complex food processing conditions (e.g. high temperature, high pressure, high shear, and multiple elements). Finally, we conclude with prospects of high pressure technology and research directions in the future. Although HPP has shown positive effects in improving the future food quality, there is still a pressing need to develop new and effective combined processing methods, upgrade processing modes, and promote sustainable lifestyles.

12.
Appl Microbiol Biotechnol ; 107(11): 3551-3564, 2023 Jun.
Article En | MEDLINE | ID: mdl-37099056

L-Theanine is a multifunctional nonprotein amino acid found naturally in tea leaves. It has been developed as a commercial product for a wide range of applications in the food, pharmaceutical, and healthcare industries. However, L-theanine production catalyzed by γ-glutamyl transpeptidase (GGT) is limited by the low catalytic efficiency and specificity of this class of enzymes. Here, we developed a strategy for cavity topology engineering (CTE) based on the cavity geometry of GGT from B. subtilis 168 (CGMCC 1.1390) to obtain an enzyme with high catalytic activity and applied it to the synthesis of L-theanine. Three potential mutation sites, M97, Y418, and V555, were identified using the internal cavity as a probe, and residues G, A, V, F, Y, and Q, which may affect the shape of the cavity, were obtained directly by computer statistical analysis without energy calculations. Finally, 35 mutants were obtained. The optimal mutant Y418F/M97Q showed a 4.8-fold improvement in catalytic activity and a 25.6-fold increase in catalytic efficiency. The recombinant enzyme Y418F/M97Q exhibited a high space-time productivity of 15.4 g L-1 h-1 by whole-cell synthesis in a 5 L bioreactor, which was one of the highest concentrations reported so far at 92.4 g L-1. Overall, this strategy is expected to enhance the enzymatic activity associated with the synthesis of L-theanine and its derivatives.Key points • Cavity topology engineering was used to modify the GGT for L-theanine biocatalysis. • The catalytic efficiency of GGT was increased by 25.6-fold. • Highest productivity of L-theanine reached 15.4 g L -1 h-1 (92.4 g L-1) in a 5 L bioreactor.


Bacillus subtilis , gamma-Glutamyltransferase , Bacillus subtilis/metabolism , gamma-Glutamyltransferase/genetics , gamma-Glutamyltransferase/chemistry , gamma-Glutamyltransferase/metabolism , Glutamates , Biocatalysis
13.
J Agric Food Chem ; 71(17): 6681-6690, 2023 May 03.
Article En | MEDLINE | ID: mdl-37083407

Given the widely existing stability-activity trade-off in enzyme evolution, it is still a goal to obtain enzymes embracing both high activity and stability. Herein, we employed an isothermal compressibility (ßT) perturbation engineering (ICPE) strategy to comprehensively understand the stability-activity seesaw-like mechanism. The stability and activity of mutants derived from ICPE uncovered a high Pearson correlation (r = 0.93) in a prototypical enzyme T1 lipase. The best variant A186L/L188M/A190Y exhibited a high Tm value up to 78.70 °C, catalytic activity of 474.04 U/mg, and a 73.33% increase in dimethyl sulfoxide resistance compared to the wild type, one of the highest comprehensive performances reported to date. The elastic activation mechanism mediated by conformational change with a ΔßT range of -6.81 × 10-6 to -1.90 × 10-6 bar-1 may account for the balancing of stability and activity to achieve better performing enzymes. The ICPE strategy deepens our understanding of stability-activity trade-off and boosts its applications in enzyme engineering.


Lipase , Enzyme Stability , Lipase/genetics , Lipase/metabolism
14.
Appl Environ Microbiol ; 89(3): e0217222, 2023 03 29.
Article En | MEDLINE | ID: mdl-36912632

Cavities are created by hydrophobic interactions between residue side chain atoms during the folding of enzymes. Redesigning cavities can improve the thermostability and catalytic activity of the enzyme; however, the synergistic effect of cavities remains unclear. In this study, Rhizomucor miehei lipase (RML) was used as a model to explore volume fluctuation and spatial distribution changes of the internal cavities, which could reveal the roles of internal cavities in the thermostability and catalytic activity. We present an inside out cavity engineering (CE) strategy based on computational techniques to explore how changes in the volumes and spatial distribution of cavities affect the thermostability and catalytic activity of the enzyme. We obtained 12 single-point mutants, among which the melting temperatures (Tm) of 8 mutants showed an increase of more than 2°C. Sixteen multipoint mutations were further designed by spatial distribution rearrangement of internal cavities. The Tm of the most stable triple variant, with mutations including T21V (a change of T to V at position 21), S27A, and T198L (T21V/S27A/T198L), was elevated by 11.0°C, together with a 28.7-fold increase in the half-life at 65°C and a specific activity increase of 9.9-fold (up to 5,828 U mg-1), one of the highest lipase activities reported. The possible mechanism of decreased volumes and spatial rearrangement of the internal cavities improved the stability of the enzyme, optimizing the outer substrate tunnel to improve the catalytic efficiency. Overall, the inside out computational redesign of cavities method could help to deeply understand the effect of cavities on enzymatic stability and activity, which would be beneficial for protein engineering efforts to optimize natural enzymes. IMPORTANCE In the present study, R. miehei lipase, which is widely used in various industries, provides an opportunity to explore the effects of internal cavities on the thermostability and catalytic activity of enzymes. Here, we execute high hydrostatic pressure molecular dynamics (HP-MD) simulations to screen the critical internal cavity and reshape the internal cavities through site-directed mutation. We show that as the global internal cavity volume decreases, cavity rearrangement can improve the stability of the protein while optimizing the substrate channel to improve the catalytic efficiency. Our results provide significant insights into understanding the mechanism of action of the internal cavity. Our strategy is expected to be applied to other enzymes to promote increases in thermostability and catalytic activity.


Enzymes, Immobilized , Lipase , Lipase/metabolism , Enzyme Stability , Temperature , Enzymes, Immobilized/metabolism , Rhizomucor
15.
AMB Express ; 13(1): 32, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36920541

Ethyl carbamate (EC) is mainly found in fermented foods and fermented alcoholic beverages, which could cause carcinogenic potential to humans. Reducing EC is one of the key research priorities to address security of fermented foods. Enzymatic degradation of EC with EC hydrolase in food is the most reliable and efficient method. However, poor tolerance to ethanol severely hinders application of EC hydrolase. In this study, the mutants of EC hydrolase were screened by diphasic high pressure molecular dynamic simulations (dHP-MD). The best variant with remarkable improvement in specific activity and was H68A/K70R/S325N, whose specific activity was approximately 3.42-fold higher than WT, and relative enzyme activity under 20% (v/v) was 5.02-fold higher than WT. Moreover, the triple mutant increased its stability by acquiring more hydration shell and forming extra hydrogen bonds. Furthermore, the ability of degrading EC of the immobilized triple mutant was both detected in mock wine and under certain reaction conditions. The stability of immobilized triple mutant and WT were both improved, and immobilized triple mutant degraded nearly twice as much EC as that of immobilized WT. Overall, dHP-MD was proved to effectively improve enzyme activity and ethanol tolerance for extent application at industrial scale.

16.
Appl Biochem Biotechnol ; 195(10): 6003-6019, 2023 Oct.
Article En | MEDLINE | ID: mdl-36738389

Acetic acid bacteria have a remarkable capacity to cope with elevated concentrations of cytotoxic acetic acid in their fermentation environment. In particular, the high-level acetate tolerance of Acetobacter pasteurianus that occurs in vinegar industrial settings must be constantly selected for. However, the improved acetic acid tolerance is rapidly lost without a selection pressure. To understand genetic and molecular biology of this acquired acetic acid tolerance in A. pasteurianus, we evolved three strains A. pasteurianus CICIM B7003, CICIM B7003-02, and ATCC 33,445 over 960 generations (4 months) in two initial acetic acids of 20 g·L-1 and 30 g·L-1, respectively. An acetic acid-adapted strain M20 with significantly improved specific growth rate of 0.159 h-1 and acid productivity of 1.61 g·L-1·h-1 was obtained. Comparative genome analysis of six evolved strains revealed that the genetic variations of adaptation were mainly focused on lactate metabolism, membrane proteins, transcriptional regulators, transposases, replication, and repair system. Among of these, lactate dehydrogenase, acetolactate synthase, glycosyltransferase, ABC transporter ATP-binding protein, two-component regulatory systems, the type II toxin-antitoxin system (RelE/RelB/StbE), exodeoxyribonuclease III, type I restriction endonuclease, tRNA-uridine 2-sulfurtransferase, and transposase might collaboratively contribute to the improved acetic acid tolerance in A. pasteurianus strains. The balance between repair factors and transposition variations might be the basis for genomic plasticity of A. pasteurianus strains, allowing the survival of populations and their offspring in acetic acid stress fluctuations. These observations provide important insights into the nature of acquired acetic acid tolerance phenotype and lay a foundation for future genetic manipulation of these strains.


Acetic Acid , Acetobacter , Acetic Acid/metabolism , Genomics , Fermentation , Acetobacter/metabolism
17.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36657041

The second generation (2 G) biofuels were introduced to solve the issues associated with first-generation biofuel (dependency on food materials) and fossil fuels, such as reservoirs diminution, high demand, price fluctuation, and lethal greenhouse gases emission. Butanol and ethanol are the main 2 G biofuels. They are used as a disinfectant, antiseptic, and chemical solvent in the pharmaceutical, plastic, textiles, cosmetics, and fuel industries. Currently, their bacterial biological production from lignocellulosic material at the industrial level with primitive microorganisms is under development and not economical and qualitative compatible as compared to that of fossil origin, due to the slow growth rate, low titer, recalcitrant nature of lignocellulose, strain intolerance to a higher amount of butanol and ethanol, and strain inability to tolerate inhibitors accumulated during pretreatment of lignocellulosic materials. Therefore, metabolic engineering strategies such as redirection of carbon flux, knocking out competing pathways, enhancing strain robustness and wide range of substrate utilization ability, and overexpression of enzymes involved in their biological synthesis have been applied to bacteria for enhancing their ability for 2 G ethanol and butanol production in a highly cost-effective amount from lignocellulosic materials. Herein, we summarized and reviewed the progress in metabolic engineering of bacterial species such as Clostridium spp,Escherichia coli, and Zymomonas mobilis for the synthesis of 2 G butanol and ethanol, especially from lignocellulosic materials.


Biofuels , Metabolic Engineering , 1-Butanol/metabolism , Biofuels/microbiology , Butanols/metabolism , Ethanol/metabolism , Fermentation
18.
Crit Rev Food Sci Nutr ; 63(22): 5841-5855, 2023.
Article En | MEDLINE | ID: mdl-35014569

Fermented foods are important parts of traditional food culture with a long history worldwide. Abundant nutritional materials and open fermentation contribute to the diversity of microorganisms, resulting in unique product quality and flavor. Lactic acid bacteria (LAB), as important part of traditional fermented foods, play a decisive role in the quality and safety of fermented foods. Reproduction and metabolic of microorganisms drive the food fermentation, and microbial interaction plays a major role in the fermentation process. Nowadays, LAB have attracted considerable interest due to their potentialities to add functional properties to certain foods or as supplements along with the research of gut microbiome. This review focuses on the characteristics of diversity and variability of LAB in traditional fermented foods, and describes the principal mechanisms involved in the flavor formation dominated by LAB. Moreover, microbial interactions and their mechanisms in fermented foods are presented. They provide a theoretical basis for exploiting LAB in fermented foods and improving the quality of traditional fermented foods. The traditional fermented food industry should face the challenge of equipment automation, green manufacturing, and quality control and safety in the production.


Fermented Foods , Lactobacillales , Lactobacillales/metabolism , Fermented Foods/microbiology , Food , Fermentation , Food Microbiology
19.
J Sci Food Agric ; 103(3): 1315-1325, 2023 Feb.
Article En | MEDLINE | ID: mdl-36114594

BACKGROUND: Broad bean paste is a high nitrogen and high salt traditional Chinese condiment, which triggers biosynthesis of nitrogen hazards like biogenic amines (BAs). Mechanisms of association and applied research of functional safety and community assembly within multiple-microbial fermentation are currently lacking. Here, bioaugmentation was performed based on the profiles of BAs accumulation and microbial succession to evaluate the functional variation within broad bean paste fermentation. RESULTS: Putrescine, spermine, and spermidine were the main BAs during traditional broad bean paste fermentation. Staphylococcus, Streptococcus, Lactococcus, Lactobacillus, Leuconostoc, and Bacillus were the predominant bacteria, whereas Aspergillus and Zygosaccharomyces dominated in fungal species, and community structure shifted upon salt exposure. PICRUSt software uncovered that Bacillus contributed significantly (>1%) to the amine oxidase gene family. Bacillus amyloliquefaciens 1-G6 and Bacillus licheniformis 2-B3 were screened to perform the bioaugmentation of broad bean paste, which achieved a 29% and 16% BA decrease respectively. Interaction network analysis showed that Cronobacter and Lactobacillus were significantly negatively correlated with Bacillus (ρ = -0.829 and ρ = -0.714, respectively, P < 0.05) in the B. amyloliquefaciens 1-G6 group, and Staphylococcus and Buttiauxella were inhibited by Bacillus (ρ = -0.657 and ρ = -0.543, respectively, P < 0.05) in the B. licheniformis 2-B3 group. CONCLUSION: The synergism of amine oxidase activity and microbial interactions led to the decline of BAs. Thus, this study improves our understanding of the underlying mechanisms of microbial succession and functional variation to further facilitate the optimization of the fermented food industry.


Bacillus , Fabaceae , Vicia faba , Bacillus/genetics , Fermentation , Biogenic Amines , Vicia faba/microbiology , Oxidoreductases
20.
Food Chem ; 405(Pt B): 134936, 2023 Mar 30.
Article En | MEDLINE | ID: mdl-36435118

Dynamics and correlations of quality attributes, microbial profiles, and flavor metabolites were systematically investigated during chili fermentation on multi-salinity-driven levels (8/13/18 %). Metabolomic analysis revealed that pre-fermentation contributed to acetic acid (10.16 mg/kg, 65.01 %) and biogenic amines (53.70 mg/kg, 70.43 %). While main- and post-fermentation accumulated lactic acid (48.33 mg/kg, 76.49 %). Metabolome-microbiome interactions revealed that dominant genera mediated by salt levels affected the distribution of 24 differential odorants in 54 aromatic compounds. Enterobacter, Klebsiella, Cronobacter, and Acinetobacter triggered the production of 121 mg/kg biogenic amines and 7 unpleasant flavors. 7 dominant genera including Leuconostoc, Lactococcus, Weissella, Lactobacillus, Candida, Pichia, and Kazachstania were correlated with spicy, fruity, and floral aromas. Interestingly, salt-acid alternation drove succession from Leuconostoc, Weissella, and Lactococcus to Lactobacillus and Pediococcus. Overall, microbial composition and function were metabolism-dependent patterns. These results provide insight into microbial succession and flavor formation during staged fermentation and promote to optimize quality of fermented chili.


Microbiota , Weissella , Fermentation , Metabolome , Lactobacillus , Leuconostoc , Lactococcus
...