Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Intervalo de año de publicación
1.
Chemosphere ; 362: 142604, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876329

RESUMEN

As global agriculture faces the pressing threat of salt stress, innovative solutions are imperative for sustainable agriculture. The remarkable potential of salicylic acid (SA) in enhancing plant resilience against environmental stressors has recently gained attention. However, the specific molecular mechanisms by which SA mitigates salt stress in Asarum sieboldii Miq., a valuable medicinal plant, remain poorly understood. Here, we evaluated the physiological and transcriptomic regulatory responses of A. sieboldii under salt stress (100 mM NaCl), both in the presence (1 mM SA) and absence of exogenous SA. The results highlighted that SA significantly alleviates salt stress, primarily through enhancing antioxidant activities as evidenced by increased superoxide dismutase, and peroxidase activities. Additionally, we observed an increment in chlorophyll (a and b), proline, total soluble sugar, and plant fresh weight, along with a decrease in malondialdehyde contents. Transcriptome analysis suggested consistency in the regulation of many differentially expressed genes and transcription factors (TFs); however, genes targets (GSTs, TIR1, and NPR1), and TFs (MYB, WRKY, TCP, and bHLH) possessed expressional uniqueness, and majority had significantly up-regulated trends in SA-coupled salt stress treatments. Further, bioinformatics and KEGG enrichment analysis indicated several SA-induced significantly enriched biological pathways. Specifically, plant hormone signal transduction was identified as being populated with key genes distinctive to auxin, cytokinin, ethylene, and salicylic acid signaling, suggesting their important role in salt stress alleviation. Inclusively, this report presents a comprehensive analysis encompassing gene targets, TFs, and biological pathways, and these insights may offer a valuable contribution to our knowledge of SA-mediated regulation and its crucial role in enhancing plant defense against diverse abiotic stressors.

2.
Vaccine ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876839

RESUMEN

BACKGROUND: The achievement of optimal vaccine efficacy is contingent upon the collaborative interactions between T and B cells in adaptive immunity. Although multiple immunization strategies have been proposed, there is a notable scarcity of comprehensive investigations pertaining to enhance immune effects through immune strategy adjustments for individual vaccine. METHODS: The hierarchically structured aluminum hydroxide microgel-stabilized Pickering emulsion (ASPE) was prepared by ultrasonic method. This study explored the influence of the immune strategy of ASPE to immune responses, including antigen exposure pattern, adjuvants and antigen dosage, and administration interval. RESULTS: The findings revealed that external antigen adsorption facilitated increased exposure of antigen epitopes, leading to elevated IgG titers and secretion of cytokines such as interferon-gamma (IFN-γ) or interleukin-4 (IL-4). Additionally, even a low dose (1 µg/dose) of antigens of ASPE boosted sufficient neutralizing antibody levels and memory T cells compared to high-dose antigens, which consistent with the adjuvant dosage effect. Furthermore, maintaining a 4-week immunization interval yielded optimal levels of antigen-specific IgG titers in both short-term and long-term scenarios, as compared to intervals of 2, 3, and 5 weeks. A consistent trend was observed in the proliferation of memory B cells, reaching a superior level at the 4-week interval, which could enhance protection against viral re-infection. CONCLUSION: Tailoring immunization strategies for specific vaccines has emerged as powerful driver in maximizing vaccine efficacy and eliciting robust immune responses, thereby presenting cutting-edge approaches to enhanced vaccination.

3.
Research (Wash D C) ; 7: 0370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894715

RESUMEN

Messenger RNA (mRNA) has emerged as an innovative therapeutic modality, offering promising avenues for the prevention and treatment of a variety of diseases. The tremendous success of mRNA vaccines in effectively combatting coronavirus disease 2019 (COVID-19) evidences the unlimited medical and therapeutic potential of mRNA technology. Overcoming challenges related to mRNA stability, immunogenicity, and precision targeting has been made possible by recent advancements in lipid nanoparticles (LNPs). This review summarizes state-of-the-art LNP-mRNA-based therapeutics, including their structure, material compositions, design guidelines, and screening principles. Additionally, we highlight current preclinical and clinical trends in LNP-mRNA therapeutics in a broad range of treatments in ophthalmological conditions, cancer immunotherapy, gene editing, and rare-disease medicine. Particular attention is given to the translation and evolution of LNP-mRNA vaccines into a broader spectrum of therapeutics. We explore concerns in the aspects of inadequate extrahepatic targeting efficacy, elevated doses, safety concerns, and challenges of large-scale production procedures. This discussion may offer insights and perspectives on near- and long-term clinical development prospects for LNP-mRNA therapeutics.

4.
Int J Biol Macromol ; 268(Pt 1): 131751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657917

RESUMEN

Eucommia rubber is a secondary metabolite from Eucommia ulmoides that has attracted much attention because of its unique properties and enormous potential for application. However, the transcriptional mechanism regulating its biosynthesis has not yet been determined. Farnesyl pyrophosphate synthase is a key enzyme in the Eucommia rubber biosynthesis. In this study, the promoter of EuFPS1 was used as bait, EuWRKY30 was screened from the cDNA library of EuFPS1 via a yeast one-hybrid system. EuWRKY30 belongs to the WRKY IIa subfamily and contains a WRKY domain and a C2H2 zinc finger motif, and the expressed protein is located in the nucleus. EuWRKY30 and EuFPS1 exhibited similar tissue expression patterns, and yeast one-hybrid and dual-luciferase experiments confirmed that EuWRKY30 directly binds to the W-box element in the EuFPS1 promoter and activates its expression. Moreover, the overexpression of EuWRKY30 significantly upregulated the expression level of EuFPS1, further increasing the density of the rubber particles and Eucommia rubber content. The results of this study indicated that EuWRKY30 positively regulates EuFPS1, which plays a critical role in the synthesis of Eucommia rubber, provided a basis for further analysis of the underlying transcriptional regulatory mechanisms.


Asunto(s)
Eucommiaceae , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Regiones Promotoras Genéticas , Goma , Factores de Transcripción , Eucommiaceae/genética , Eucommiaceae/metabolismo , Goma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Int J Biol Macromol ; 262(Pt 1): 129721, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296132

RESUMEN

The serine protease SDD1 regulates stomatal density, but its potential impact on plant vegetative growth is unclear. Our study reveals a substantial upregulation of SDD1 in triploid poplar apical buds and leaves, suggesting its possible role in their growth regulation. We cloned PagSDD1 from poplar 84 K (Populus alba × P. glandulosa) and found that overexpression in poplar, soybean, and lettuce led to decreased leaf stomatal density. Furthermore, PagSDD1 represses PagEPF1, PagEPF2, PagEPFL9, PagSPCH, PagMUTE, and PagFAMA expression. In contrast, PagSDD1 promotes the expression of its receptors, PagTMM and PagERECTA. PagSDD1-OE poplars showed stronger drought tolerance than wild-type poplars. Simultaneously, PagSDD1-OE poplar, soybean, and lettuce had vegetative growth advantages. RNA sequencing revealed a significant upregulation of genes PagLHCB2.1 and PagGRF5, correlating positively with photosynthetic rate, and PagCYCA3;4 and PagEXPA8 linked to cell division and differentiation in PagSDD1-OE poplars. This increase promoted leaf photosynthesis, boosted auxin and cytokinin accumulation, and enhanced vegetative growth. SDD1 overexpression can increase the biomass of poplar, soybean, and lettuce by approximately 70, 176, and 155 %, respectively, and increase the water use efficiency of poplar leaves by over 52 %, which is of great value for the molecular design and breeding of plants with growth and water-saving target traits.


Asunto(s)
Populus , Agua , Agua/metabolismo , Estomas de Plantas/genética , Sequías , Fitomejoramiento , Hojas de la Planta/metabolismo , Populus/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
New Phytol ; 241(6): 2506-2522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38258389

RESUMEN

Although polyploid plants have lower stomatal density than their diploid counterparts, the molecular mechanisms underlying this difference remain elusive. Here, we constructed a network based on the triploid poplar transcriptome data and triple-gene mutual interaction algorithm and found that PpnMYC2 was related to stomatal development-related genes PpnEPF2, PpnEPFL4, and PpnEPFL9. The interactions between PpnMYC2 and PagJAZs were experimentally validated. PpnMYC2-overexpressing poplar and Arabidopsis thaliana had reduced stomatal density. Poplar overexpressing PpnMYC2 had higher water use efficiency and drought resistance. RNA-sequencing data of poplars overexpressing PpnMYC2 showed that PpnMYC2 promotes the expression of stomatal density inhibitors PagEPF2 and PagEPFL4 and inhibits the expression of the stomatal density-positive regulator PagEPFL9. Yeast one-hybrid system, electrophoretic mobility shift assay, ChIP-qPCR, and dual-luciferase assay were employed to substantiate that PpnMYC2 directly regulated PagEPF2, PagEPFL4, and PagEPFL9. PpnMYC2, PpnEPF2, and PpnEPFL4 were significantly upregulated, whereas PpnEPFL9 was downregulated during stomatal formation in triploid poplar. Our results are of great significance for revealing the regulation mechanism of plant stomatal occurrence and polyploid stomatal density, as well as reducing stomatal density and improving plant water use efficiency by overexpressing MYC2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Populus , Agua/metabolismo , Triploidía , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estomas de Plantas/fisiología , Populus/metabolismo , Regulación de la Expresión Génica de las Plantas , Sequías , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética
7.
Hortic Res ; 10(10): uhad186, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37899951

RESUMEN

Poplar is an important afforestation and urban greening species. Poplar leaf development occurs in stages, from young to mature and then from mature to senescent; these are accompanied by various phenotypic and physiological changes. However, the associated transcriptional regulatory network is relatively unexplored. We first used principal component analysis to classify poplar leaves at different leaf positions into two stages: developmental maturity (the stage of maximum photosynthetic capacity); and the stage when photosynthetic capacity started to decline and gradually changed to senescence. The two stages were then further subdivided into five intervals by gene expression clustering analysis: young leaves, the period of cell genesis and functional differentiation (L1); young leaves, the period of development and initial formation of photosynthetic capacity (L3-L7); the period of maximum photosynthetic capacity of functional leaves (L9-L13); the period of decreasing photosynthetic capacity of functional leaves (L15-L27); and the period of senescent leaves (L29). Using a weighted co-expression gene network analysis of regulatory genes, high-resolution spatiotemporal transcriptional regulatory networks were constructed to reveal the core regulators that regulate leaf development. Spatiotemporal transcriptome data of poplar leaves revealed dynamic changes in genes and miRNAs during leaf development and identified several core regulators of leaf development, such as GRF5 and MYB5. This in-depth analysis of transcriptional regulation during leaf development provides a theoretical basis for exploring the biological basis of the transcriptional regulation of leaf development and the molecular design of breeding for delaying leaf senescence.

8.
Vaccines (Basel) ; 11(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37514985

RESUMEN

Therapeutic cancer vaccines are considered as one of the most cost-effective ways to eliminate cancer cells. Although many efforts have been invested into improving their therapeutic effect, transient maturation and activations of dendritic cells (DCs) cause weak responses and hamper the subsequent T cell responses. Here, we report on an alum-stabilized Pickering emulsion (APE) that can load a high number of antigens and continue to release them for extensive maturation and activations of antigen-presenting cells (APCs). After two vaccinations, APE/OVA induced both IFN-γ-secreting T cells (Th1) and IL-4-secreting T cells (Th2), generating effector CD8+ T cells against tumor growth. Additionally, although they boosted the cellular immune responses in the spleen, we found that multiple administrations of cancer vaccines (three or four times in 3-day intervals) may increase the immunosuppression with more PD-1+ CD8+ and LAG-3+ CD8+ T cells within the tumor environment, leading to the diminished overall anti-tumor efficacy. Combining this with anti-PD-1 antibodies evidently hindered the suppressive effect of multiple vaccine administrations, leading to the amplified tumor regression in B16-OVA-bearing mice.

9.
Nat Commun ; 14(1): 3882, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391416

RESUMEN

Current methods for intracellular protein analysis mostly require the separation of specific organelles or changes to the intracellular environment. However, the functions of proteins are determined by their native microenvironment as they usually form complexes with ions, nucleic acids, and other proteins. Here, we show a method for in situ cross-linking and analysis of mitochondrial proteins in living cells. By using the poly(lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with dimethyldioctadecylammonium bromide (DDAB) to deliver protein cross-linkers into mitochondria, we subsequently analyze the cross-linked proteins using mass spectrometry. With this method, we identify a total of 74 pairs of protein-protein interactions that do not exist in the STRING database. Interestingly, our data on mitochondrial respiratory chain proteins ( ~ 94%) are also consistent with the experimental or predicted structural analysis of these proteins. Thus, we provide a promising technology platform for in situ defining protein analysis in cellular organelles under their native microenvironment.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Conformación Proteica , Bases de Datos Factuales , Glicoles
10.
Signal Transduct Target Ther ; 8(1): 189, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37221173

RESUMEN

Current attempts in vaccine delivery systems concentrate on replicating the natural dissemination of live pathogens, but neglect that pathogens evolve to evade the immune system rather than to provoke it. In the case of enveloped RNA viruses, it is the natural dissemination of nucleocapsid protein (NP, core antigen) and surface antigen that delays NP exposure to immune surveillance. Here, we report a multi-layered aluminum hydroxide-stabilized emulsion (MASE) to dictate the delivery sequence of the antigens. In this manner, the receptor-binding domain (RBD, surface antigen) of the spike protein was trapped inside the nanocavity, while NP was absorbed on the outside of the droplets, enabling the burst release of NP before RBD. Compared with the natural packaging strategy, the inside-out strategy induced potent type I interferon-mediated innate immune responses and triggered an immune-potentiated environment in advance, which subsequently boosted CD40+ DC activations and the engagement of the lymph nodes. In both H1N1 influenza and SARS-CoV-2 vaccines, rMASE significantly increased antigen-specific antibody secretion, memory T cell engagement, and Th1-biased immune response, which diminished viral loads after lethal challenge. By simply reversing the delivery sequence of the surface antigen and core antigen, the inside-out strategy may offer major implications for enhanced vaccinations against the enveloped RNA virus.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Humanos , Antígenos Virales , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacunación , Antígenos de Superficie , Anticuerpos
11.
Environ Sci Pollut Res Int ; 30(28): 72741-72755, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37178286

RESUMEN

This paper constructs a novel stress measurement system of carbon market from the perspective of trading, emission reduction, and external shocks and simulates the stress indices of national and pilot carbon markets of China with the methods of functional data analysis and criteria importance through intercriteria correlation. It concludes that the overall carbon market stress is in the shape of "W" and still at a high level, with frequent fluctuations and an upward trend. In addition, the stress of Hubei, Beijing, and Shanghai carbon market fluctuates and rises, while the stress of Guangdong carbon market decreases. Moreover, carbon market stress mainly comes from trading and emission reduction. Furthermore, stress fluctuation of Guangdong and Beijing carbon market is more prone to "big waves," indicating that the two markets are sensitive to big events. Finally, the pilot carbon markets are divided into stress-driven and stress-release market and the type of which keeps change in different period.


Asunto(s)
Carbono , Análisis de Datos , China , Carbono/análisis , Beijing
12.
Plant Methods ; 19(1): 15, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793134

RESUMEN

BACKGROUND: Agrobacterium tumefaciens-mediated leaf disc genetic transformation is an important way to achieve transgenics or gene editing. Ensuring stable and efficient genetic transformation is still an important problem in modern biology. It is assumed that the difference in the development status of genetic transformation cells of receptor materials is the main reason for the difference and instability of genetic transformation efficiency; the stable and efficient genetic transformation rate can be obtained by defining the appropriate treatment period of the receptor material and applying genetic transformation in a timely manner. RESULTS: Based on these assumptions, we studied and established an efficient and stable Agrobacterium-mediated plant transformation system with hybrid poplar (Populus alba × Populus glandulosa, 84 K) leaves, stem segments and tobacco leaves as the research objects. There were differences in the development process of leaf bud primordial cells from different explants, and the genetic transformation efficiency was significantly related to the cell development stage of the in vitro cultured materials. Among them, the genetic transformation rate of poplar and tobacco leaves was the highest on the 3rd and 2nd day of culture, reaching 86.6% and 57.3%, respectively. The genetic transformation rate of poplar stem segments was the highest on the 4th day of culture, reaching 77.8%. The best treatment period was from the development of leaf bud primordial cells to the S phase of the cell cycle. The number of cells detected using flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) staining, the expression of cell cycle-related protein CDKB1; 2, CDKD1; 1, CYCA3; 4, CYCD1; 1, CYCD3; 2, CYCD6; 1, and CYCH; 1 of explants, and morphological changes of explants can be used as indicators to determine the appropriate treatment period for genetic transformation. CONCLUSIONS: Our study provides a new and universal set of methods and characteristics to identify the S phase of the cell cycle and apply genetic transformation treatments at the appropriate time. Our results are of great significance for improving the efficiency and stability of plant leaf disc genetic transformation.

13.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077563

RESUMEN

Poplar is an important fast-growing tree, and its photosynthetic capacity directly affects its vegetative growth. Stomatal density is closely related to photosynthetic capacity and growth characteristics in plants. Here, we isolated PagSTOMAGEN from the hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its biological function in vegetative growth. PagSTOMAGEN was expressed predominantly in young tissues and localized in the plasma membrane. Compared with wild-type 84K poplars, PagSTOMAGEN-overexpressing plants displayed an increased plant height, leaf area, internode number, basal diameter, biomass, IAA content, IPR content, and stomatal density. Higher stomatal density improved the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate in transgenic poplar. The differential expression of genes related to stomatal development showed a diverged influence of PagSTOMAGEN at different stages of stomatal development. Finally, transcriptomic analysis showed that PagSTOMAGEN affected vegetative growth by affecting the expression of photosynthesis and plant hormone-related genes (such as SAUR75, PQL2, PSBX, ERF1, GNC, GRF5, and ARF11). Taken together, our data indicate that PagSTOMAGEN could positively regulate stomatal density and increase the photosynthetic rate and plant hormone content, thereby promoting vegetative growth in poplar. Our study is of great significance for understanding the relationship between stoma, photosynthesis, and yield breeding in poplar.


Asunto(s)
Populus , Fotosíntesis/genética , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Populus/metabolismo
14.
ACS Macro Lett ; 11(8): 1014-1021, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35900927

RESUMEN

Raspberry-shaped particles have attracted increasing interest due to their tunable surface morphologies and physicochemical properties. A variety of covalent and noncovalent strategies have been developed for the fabrication of raspberry-shaped particles. However, most of these strategies are complex or require precise control of solution conditions. In this work, we develop a direct approach for the fabrication of noncovalent raspberry-shaped microgels. Our strategy works through the electrostatically driven heterocoagulation of binary microgels with complementary functional groups at the oil-water interface. By introducing hexanoic acid (HA) into the oil phase, stable inverse water-in-oil (w/o) Pickering emulsions could be stabilized solely by HA-swollen microgels or self-assembled raspberry-shaped microgels. Furthermore, the formation mechanism and the interfacial properties of interfaces laden with raspberry-shaped microgels were investigated. The results indicate that HA can effectively improve the hydrophobicity and interfacial activity of microgels. In addition, raspberry-shaped microgels achieve high coverage on the droplet surface, resulting in the elastic interface and excellent stability of emulsions. We envision that these results will not only fill a knowledge gap in the field of soft matter interfacial self-assembly, but also will shed light on the rational design of raspberry-shaped soft colloids and the on-demand control of interfacial rheology. In addition, we expect that our results will contribute to wider applications of microgel-stabilized emulsions, including cascade catalysis, microreactor, and in vivo drug delivery.


Asunto(s)
Microgeles , Rubus , Emulsiones/química , Tamaño de la Partícula , Agua/química
15.
Int J Mol Sci ; 23(9)2022 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-35563644

RESUMEN

GATA transcription factors have been demonstrated to play key regulatory roles in plant growth, development, and hormonal response. However, the knowledge concerning the evolution of GATA genes in Eucalyptus urophylla and their trans-regulatory interaction is indistinct. Phylogenetic analysis and study of conserved motifs, exon structures, and expression patterns resolved the evolutionary relationships of these GATA proteins. Phylogenetic analysis showed that EgrGATAs are broadly distributed in four subfamilies. Cis-element analysis of promoters revealed that EgrGATA genes respond to light and are influenced by multiple hormones and abiotic stresses. Transcriptome analysis revealed distinct temporal and spatial expression patterns of EgrGATA genes in various tissues of E. urophylla S.T.Blake, which was confirmed by real-time quantitative PCR (RT-qPCR). Further research revealed that EurGNC and EurCGA1 were localized in the nucleus, and EurGNC directly binds to the cis-element of the EurGUN5 promoter, implying its potential roles in the regulation of chlorophyll synthesis. This comprehensive study provides new insights into the evolution of GATAs and could help to improve the photosynthetic assimilation and vegetative growth of E. urophylla at the genetic level.


Asunto(s)
Eucalyptus , Clorofila/genética , Clorofila/metabolismo , Eucalyptus/genética , Eucalyptus/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
16.
Front Chem Sci Eng ; 16(6): 973-984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35070473

RESUMEN

To increase antibody secretion and dose sparing, squalene-in-water aluminium hydrogel (alum)-stabilised emulsions (ASEs) have been developed, which offer increased surface areas and cellular interactions for higher antigen loading and enhanced immune responses. Nevertheless, the squalene (oil) in previous attempts suffered from limited oxidation resistance, thus, safety and stability were compromised. From a clinical translational perspective, it is imperative to screen the optimal oils for enhanced emulsion adjuvants. Here, because of the varying oleic to linoleic acid ratio, soybean oil, peanut oil, and olive oil were utilised as oil phases in the preparation of aluminium hydrogel-stabilised squalene-in-water emulsions, which were then screened for their stability and immunogenicity. Additionally, the underlying mechanisms of oil phases and emulsion stability were unravelled, which showed that a higher oleic to linoleic acid ratio increased anti-oxidative capabilities but reduced the long-term storage stability owing to the relatively low zeta potential of the prepared droplets. As a result, compared with squalene-in-water ASEs, soybean-in-water ASEs exhibited comparable immune responses and enhanced stability. By optimising the oil phase of the emulsion adjuvants, this work may offer an alternative strategy for safe, stable, and effective emulsion adjuvants. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s11705-021-2123-1 and is accessible for authorized users.

17.
Biomaterials ; 280: 121313, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894583

RESUMEN

While research on cancer vaccines has made great strides in the field of immunotherapy, the targeted delivery of multiple effective components (rational-tailored antigens and adjuvants) remains a challenge. Here, we utilized the unique hierarchical structures of Pickering emulsions (particles, oil core, and water-oil interface) to develop mannosylated (M) Pickering emulsions (PE) that target antigen presenting cells and synergistically deliver antigenic peptides and the TLR9 agonist CpG (C) as an enhanced cancer vaccine (MPE-C). We chemically linked mannose residues to PLGA/PLAG-PEG nanoparticles and produced a dense array of mannose on the nanopatterned surface of Pickering emulsions, allowing for increased cellular targeting. Together with the inherent deformability of the oily core, MPE-C increased the droplet-cellular contact area and provoked the cellular recognition of mannose and CpG for enhanced immune activation. We found that MPE-C attracted a large number of APCs to the local site of administration, evidently increasing cellular uptake and activation. Additionally, we observed increased antigen-specific cellular immune responses, with potent anti-tumor effects against both E.G7-OVA and B16-MUCI tumors. Furthermore, MPE-C combined with PD-1 antibodies produced a significant tumor regression, resulting in synergistic increases in anti-tumor effects. Thus, through the strategic loading of mannose, antigens, and CpG, Pickering emulsions could serve as a targeted delivery platform for enhanced multicomponent cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Adyuvantes Inmunológicos/farmacología , Emulsiones/química , Inmunidad Celular , Nanopartículas/química
18.
Front Genet ; 12: 703077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490036

RESUMEN

Homologous recombination (HR), the most significant event in meiosis, has important implications for genetic diversity and evolution in organisms. Heteroduplex DNA (hDNA), the product of HR, can be captured by artificially induced chromosome doubling during the development of the embryo sac to inhibit postmeiotic segregation, subsequently, and hDNAs are directly detected using codominant simple sequence repeat (SSR) markers. In the present study, two hybrid triploid populations derived from doubling the chromosomes of the embryo sac induced by high temperature in Populus tomentosa served as starting materials. Eighty-seven, 62, and 79 SSR markers on chromosomes 01, 04, and 19, respectively, that were heterozygous in the maternal parent and different from the paternal parent were screened to detect and characterize the hDNA in P. tomentosa. The results showed that the hDNA frequency patterns on chromosomes changed slightly when the number of SSR primers increased. The highest hDNA frequency occurred at the adjacent terminal on chromosomes, which was slightly higher than those at the terminals in the two genotypic individuals, and the hDNA frequency gradually decreased as the locus-centromere distance decreased. With the increase in the number of SSR markers employed for detection, the number of recombination events (REs) detected significantly increased. In regions with high methylation or long terminal repeat (LTR) retrotransposon enrichment, the frequency of hDNA was low, and high frequencies were observed in regions with low sequence complexity and high gene density. High-frequency recombination occurring at high gene density regions strongly affected the association between molecular markers and quantitative trait loci (QTLs), which was an important factor contributing to the difficulty encountered by MAS in achieving the expected breeding results.

19.
Adv Drug Deliv Rev ; 176: 113871, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34311014

RESUMEN

In the combat against pathogens, the immune systems were evolved with the immune recognitions against the various danger signals, which responded vigorously upon the pathogen invasions and elicited potent antibodies or T cell engagement against the re-infections. Envisage with the prevailing pandemics and increasing demands for cancer vaccines, bio-mimic particles were developed to imitate the natural traits of the pathogens, which conferred the optimal strategies to stimulate the immune engagement and let to the increased vaccine efficacy. Here, the recent development in bio-mimic particles, as well as the natural cues from the pathogens were discussed. As such, the designing principles that adapted from the physiochemical properties of the pathogens were unfolded as the surface characteristics (hydrophobic, nano-pattern, antigen display, charge), properties (size, shape, softness) and the delivered components (peptide, protein, nuclear acids, toll-like receptor (TLR) agonist, antibody). Additionally, the strategies for the efficient delivery, regarding the biodistribution, internalization and presentation of the antigens were also illustrated. Through reviewing the state-of-art in biomimetic particles, the lesson learnt from the natural traits and pathogenic invasion may shed light on the rational design for the enhanced vaccinations.


Asunto(s)
Biomimética , Vacunación/métodos , Animales , Humanos
20.
Adv Mater ; 33(26): e2100106, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34013604

RESUMEN

A major challenge in vaccine delivery is to achieve robust lymph-node (LN) accumulation, which can capitalize on concentrated immunocytes and cytokines in LNs to stimulate the onset and persistence of adaptive immune responses. Previous attempts at developing vaccine delivery systems have focused on the sizes, charges, or surface ligands but not on their deformability. In fact, the LN homing of antigen-presenting cells depends on deformability to pass through the cellular gaps. Herein, the deformability of albumin-stabilized emulsions is engineered. Owing to self-adaptive deformability, the droplets (≈330 nm) can attach to and deform between cells and adjust their sizes to pass through the endothelial gaps (20-100 nm), favoring direct LN transfer (intercellular pathway). Additionally, owing to relatively large sizes, some emulsions can be retained at the administration sites for potent antigen uptake and activation of APCs as well as LN-targeted delivery of vaccines (intracellular pathway). Compared with solid particles, the dual LN transfer strategy evidently enhances antigen accumulation and activation of LN drainage, potently stimulates cellular immune responses, and increases the survival rate of tumor-bearing mice. Thus, the deformability of albumin-stabilized droplets may offer an efficient strategy for potent LN targeting and enhanced vaccinations.


Asunto(s)
Células Presentadoras de Antígenos , Inmunidad Celular , Vacunación , Animales , Emulsiones , Ganglios Linfáticos , Ratones , Vacunas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...