Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
J Invertebr Pathol ; 207: 108204, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313093

RESUMEN

Microcycle conidiation has displayed the greater potential than normal conidiation in large-scale production of mycopesticides. Fungi require partial hydrolysis of the cell wall to achieve the necessary plasticity during their morphological changes. Therefore, various cell wall-associated hydrolases are crucial for fungal morphogenesis. Eng1, as an endo-ß-1,3-glucanase, is involved in the cell separation of fungi, but its role in morphological changes of entomopathogenic fungi is not yet clear. Here, the endo-ß-1,3-glucanase gene MaEng1 was characterized in the model entomopathogenic fungi M. acridum. MaEng1 possesses a typical carbohydrate hydrolase domain and belongs to the GH81 family. The functions of MaEng1 in fungal growth, stress tolerance, pathogenicity, and conidiation capacity were analyzed using targeted gene disruption. The results displayed that the absence of MaEng1 does not affect the fungal growth, stress tolerances, and pathogenicity in M. acridum. However, the knockout of MaEng1 led to the normal conidiation of M. acridum on the SYA medium, which can induce the microcycle conidiation. Moreover, the content of ß-1,3-glucan in the cell wall of the MaEng1-disruption strain were significantly reduced and the exposures of ß-1,3-glucan on the surface of the mature conidia and mycelia in ΔMaEng1 were declined, indicating that MaEng1 contributes to the conversion of conidiation mode in M. acridum by affecting the cell wall structure.

2.
Commun Biol ; 7(1): 1184, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39300313

RESUMEN

Major symbiotic organisms have evolved to establish beneficial relationships with hosts. However, understanding the interactions between symbionts and insect hosts, particularly for their roles in defense against pathogens, is still limited. In a previous study, we proposed that the fungus Metarhizium anisopliae can infect the brown planthopper Nilaparvata lugens, a harmful pest for rice crops. To expand on this, we investigated changes in N. lugens' intestinal commensal community after M. anisopliae infection and identified key gut microbiotas involved. Our results showed significant alterations in gut microbiota abundance and composition at different time points following infection with M. anisopliae. Notably, certain symbionts, like Acinetobacter baumannii, exhibited significant variations in response to the fungal infection. The decrease in these symbionts had a considerable impact on the insect host's survival. Interestingly, reintroducing A. baumannii enhanced the host's resistance to M. anisopliae, emphasizing its role in pathogen defense. Additionally, A. baumannii stimulated host immune responses, as evidenced by increased expression of immune genes after reintroduction. Overall, our findings highlight the significance of preserving a stable gut microbial community for the survival of insects. In specific conditions, the symbiotic microorganism A. baumannii can enhance the host's ability to resist entomopathogenic pathogens through immune regulation.


Asunto(s)
Acinetobacter baumannii , Microbioma Gastrointestinal , Hemípteros , Metarhizium , Simbiosis , Animales , Metarhizium/fisiología , Metarhizium/patogenicidad , Acinetobacter baumannii/fisiología , Hemípteros/microbiología , Hemípteros/inmunología , Interacciones Huésped-Patógeno , Resistencia a la Enfermedad
3.
J Fungi (Basel) ; 10(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39194870

RESUMEN

Insect pathogenic fungi have shown great potential in agricultural pest control. Conidiation is crucial for the survival of filamentous fungi, and dispersal occurs through two methods: normal conidiation, where conidia differentiate from mycelium, and microcycle conidiation, which involves conidial budding. The conidiation process is related to cell separation. The forkhead box gene Sep1 in Schizosaccharomyces pombe plays a crucial role in cell separation. Nevertheless, the function of Sep1 has not been clarified in filamentous fungi. Here, MaSep1, the homolog of Sep1 in Metarhizium acridum, was identified and subjected to functional analysis. The findings revealed that conidial germination of the MaSep1-deletion strain (ΔMaSep1) was accelerated and the time for 50% germination rate of conidial was shortened by 1 h, while the conidial production of ΔMaSep1 was considerably reduced. The resistances to heat shock and UV-B irradiation of ΔMaSep1 were enhanced, and the expression of some genes involved in DNA damage repair and heat shock response was significantly increased in ΔMaSep1. The disruption of MaSep1 had no effect on the virulence of M. acridum. Interestingly, ΔMaSep1 conducted the normal conidiation on the microcycle conidiation medium, SYA. Furthermore, 127 DEGs were identified by RNA-Seq between the wild-type and ΔMaSep1 strains during microcycle conidiation, proving that MaSep1 mediated the conidiation pattern shift by governing some genes associated with conidiation, cell division, and cell wall formation.

4.
J Fungi (Basel) ; 10(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39194890

RESUMEN

The entomopathogenic fungus (EPF) Metarhizium acridum is a typical filamentous fungus and has been used to control migratory locusts (Locusta migratoria manilensis). This study examines the impact of the Zn(II)2Cys6 transcription factor, MaAzaR, in the virulence of M. acridum. Disruption of MaAzaR (ΔMaAzaR) diminished the fungus's ability to penetrate the insect cuticle, thereby decreasing its virulence. The median lethal time (LT50) for the ΔMaAzaR strain increased by approximately 1.5 d compared to the wild-type (WT) strain when topically inoculated, simulating natural infection conditions. ΔMaAzaR compromises the formation, turgor pressure, and secretion of extracellular hydrolytic enzymes in appressoria. However, the growth ability of ΔMaAzaR within the hemolymph is not impaired; in fact, it grows better than the WT strain. Moreover, RNA-sequencing (RNA-Seq) analysis of ΔMaAzaR and WT strains grown for 20 h on locust hindwings revealed 87 upregulated and 37 downregulated differentially expressed genes (DEGs) in the mutant strain. Pathogen-host interaction database (PHI) analysis showed that about 40% of the total DEGs were associated with virulence, suggesting that MaAzaR is a crucial transcription factor that directly regulates the expression of downstream genes. This study identifies a new transcription factor involved in EPF cuticle penetration, providing theoretical support and genetic resources for the developing highly virulent strains.

5.
PLoS Pathog ; 20(7): e1012431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39078845

RESUMEN

Reactive carbonyl and oxygen species (RCS/ROS), often generated as metabolic byproducts, particularly under conditions of pathology, can cause direct damage to proteins, lipids, and nucleic acids. Glyoxal oxidases (Gloxs) oxidize aldehydes to carboxylic acids, generating hydrogen peroxide (H2O2). Although best characterized for their roles in lignin degradation, Glox in plant fungal pathogens are known to contribute to virulence, however, the mechanism underlying such effects are unclear. Here, we show that Glox in the insect pathogenic fungus, Metarhizium acridum, is highly expressed in mycelia and during formation of infection structures (appressoria), with the enzyme localizing to the cell membrane. MaGlox targeted gene disruption mutants showed RCS and ROS accumulation, resulting in cell toxicity, induction of apoptosis and increased autophagy, inhibiting normal fungal growth and development. The ability of the MaGlox mutant to scavenge RCS was significantly reduced, and the mutant exhibited increased susceptibility to aldehydes, oxidative and cell wall perturbing agents but not toward osmotic stress, with altered cell wall contents. The ΔMaGlox mutant was impaired in its ability to penetrate the host cuticle and evade host immune defense resulting in attenuated pathogenicity. Overexpression of MaGlox promoted fungal growth and conidial germination, increased tolerance to H2O2, but had little to other phenotypic effects. Transcriptomic analyses revealed downregulation of genes related to cell wall synthesis, conidiation, stress tolerance, and host cuticle penetration in the ΔMaGlox mutant. These findings demonstrate that MaGlox-mediated scavenging of RCS is required for virulence, and contributes to normal fungal growth and development, stress resistance.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas Fúngicas , Metarhizium , Virulencia , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Metarhizium/patogenicidad , Metarhizium/genética , Metarhizium/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Estrés Oxidativo
6.
J Fungi (Basel) ; 10(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39057353

RESUMEN

Entomopathogenic fungi are valuable sources of biological pesticides, with conidial yield and quality being pivotal factors determining their broad applications. AzaR, a fungus-specific zinc-cluster transcription factor, is known to regulate the biosynthesis of polyketone secondary metabolites in Aspergillus niger; however, its role in pathogenic fungi remains unclear. This study investigated the role of MaAzaR in the growth, development, and environmental tolerance of Metarhizium acridum. MaAzaR deletion slowed down conidial germination rate, caused reduction in conidial yield, lowered fungal tolerance to UV radiation, did not affect fungal heat-shock tolerance, and increased fungal sensitivity to the cell-wall-destructive agent calcofluor white. Furthermore, MaAzaR deletion transformed microcycle conidiation to normal conidiation on the microcycle conidiation medium. Transcription profile analysis demonstrated that MaAzaR could regulate transformation of the conidiation pattern by controlling the expression of genes related to cell division, mycelium growth and development, and cell wall integrity. Thus, this study identified a new gene related to fungal conidiation and environmental tolerance, enriching our understanding of the molecular mechanism of microcycle conidiation and providing theoretical support and genetic resources for the development of high-yielding strains.

7.
Pest Manag Sci ; 80(2): 820-836, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794279

RESUMEN

BACKGROUND: The fungal genera Metarhizium contain many important multiple species that are used as biocontrol agents and as model organisms for exploring insect-fungal interactions. Metarhizium spp. exhibit different traits of pathogenicity, suggesting that the pathogenesis can be quite distinctive. However, the underlying differences in their pathogenesis remain poorly understood. RESULTS: Pathogenicity analysis showed that Metarhizium anisopliae (strain CQMa421) displayed higher virulence against oriental migratory locusts, Locusta migratoria manilensis (Meyen), than the acridid-specific specie Metarhizium acridum (strain CQMa102). Relative to M. acridum, M. anisopliae possessed a higher conidial hydrophobicity, increased ability to penetrate the host, accelerated growth under hypoxia and enhanced ability for the utilization of different carbon sources. Different distributions of carbohydrate epitopes at cell wall surface of M. anisopliae might also contribute to successful evasion of host immune defenses. Comparative genomics showed that M. anisopliae has 98 more virulence-related secreted proteins (133) than M. acridum (35), which can be functionally classified as hydrolases, virulence effectors, cell wall degradation and stress tolerance-related proteins, and helpful to the cuticle penetration and host internal environment adaption. In addition, differences in genomic clusters specifically related to secondary metabolites, including the clusters of Indole-NRPS hybrid, T1PKS-NRPS like hybrid, Betalactone, Fungal-Ripp and NRPS-Terpene hybrid, may lead to differences in core virulence-related secondary metabolite genes in M. acridum (18) and M. anisopliae (36). CONCLUSION: The comparative study provided new insights into the different infection strategies between M. anisopliae and M. acridum, and further facilitate the identification of virulence-related genes for the improvement of mycoinsecticides. © 2023 Society of Chemical Industry.


Asunto(s)
Metarhizium , Virulencia , Metarhizium/fisiología , Genómica
8.
Int J Biol Macromol ; 253(Pt 6): 127389, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37827395

RESUMEN

Locusts (Locusta migratoria) are one of the most destructive insect pests worldwide. Entomopathogenic fungi can infect and kill locusts, with Metarhizium acridum having evolved as a specialized acridid pathogen. However, locusts have evolved countermeasures to limit or avoid microbial pathogens, although the underlying molecular mechanisms behind these defenses remain obscure. Here, we demonstrate that L. migratoria exhibit avoidance behaviors towards M. acridum contaminated food via recognition of fungal volatiles, with locust perception of the volatile mediated by the LmigCSP60 chemosensory protein. RNAi-knockdown of LmigCSP60 lowered locust M. acridum avoidance behavior and increased infection and mortality. The fungal volatile, 2-phenylethanol (PEA), was identified to participate in locust behavioral avoidance. RNAi-knockdown of LmigCSP60 reduced antennal electrophysiological responses to PEA and impaired locust avoidance to the compound. Purified LmigCSP60 was able to bind a set of fungal volatiles including PEA. Furthermore, reduction of PEA emission by M. acridum via construction of a targeted gene knockout mutant of the alcohol dehydrogenase gene (ΔMaAdh strain) that contributes to PEA production reduced locust avoidance behavior towards the pathogen. These findings identify an olfactory circuit used by locusts to detect and avoid potential microbial pathogens before they are capable of initiating infection and highlight behavioral and olfactory adaptations affecting the co-evolution of host-pathogen interactions.


Asunto(s)
Saltamontes , Locusta migratoria , Animales , Saltamontes/genética , Proteínas de Insectos/genética , Locusta migratoria/genética , Olfato , Alimentos
9.
FEMS Microbiol Ecol ; 99(11)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37742208

RESUMEN

The highly destructive southern rice black-streaked dwarf virus (SRBSDV) causes significant losses in rice production. To understand its impact on rice root, we studied fibrous root development and root microbiota variation (rhizosphere and endosphere) after SRBSDV infection. SRBSDV infection reduced the number and length of fibrous roots in rice. Interestingly, the rhizosphere had higher bacterial diversity and abundance at the initial (0 days) and 30-day postinfection stages, while 30-day-old roots showed increased diversity and abundance. However, there were no significant differences in microbiota diversity between infected and noninfected rice plants. The major rhizosphere microbiota included Proteobacteria, Bacteroidota, Acidobacteriota, and Planctomycetota, comprising about 80% of the community. The endosphere was dominated by Proteobacteria and Cyanobacteria, constituting over 90%, with Bacteroidota as the next most prominent group. Further, we identified differentially expressed genes related to plant-pathogen interactions, plant hormone signal, and ABC transporters, potentially affecting root morphology. Notably, specific bacteria (e.g. Inquilinus and Actinoplanes) showed correlations with these pathways. In conclusion, SRBSDV primarily influences root growth through host metabolism, rather than exerting direct effects on the root microbiota. These insights into the interactions among the pathogen, rice plant, and associated microbiota could have implications for managing SRBSDV's detrimental effects on rice production.

10.
J Fungi (Basel) ; 9(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37504734

RESUMEN

Fungal diseases are widespread among insects and play a crucial role in naturally regulating insect populations. Mosquitoes, known as vectors for numerous infectious diseases, pose a significant threat to human health. Entomopathogenic fungi (EPF) have emerged as highly promising alternative agents to chemical mosquitocides for controlling mosquitoes at all stages of their life cycle due to their unique infection pathway through direct contact with the insect's cuticle. In recent years, significant advancements have been made in understanding the infection pathways and pathogenic mechanisms of EPF against mosquitoes. Various strategies involving the use of EPF alone or combinations with other approaches have been employed to target mosquitoes at various developmental stages. Moreover, the application of genetic technologies in fungi has opened up new avenues for enhancing the mosquitocidal efficacy of EPF. This review presents a comprehensive summary of recent advancements in our understanding the pathogenic mechanisms of EPF, their applications in mosquito management, and the combination of EPF with other approaches and employment of transgenic technologies. The biosafety concerns associated with their use and the corresponding approaches are also discussed. The recent progress suggests that EPF have the potential to serve as a future biorational tool for controlling mosquito vectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA