Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evodevo ; 14(1): 5, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024993

RESUMEN

BACKGROUND: The polyplacophoran mollusks (chitons) possess serially arranged shell plates. This feature is unique among mollusks and believed to be essential to explore the evolution of mollusks as well as their shells. Previous studies revealed several cell populations in the dorsal epithelium (shell field) of polyplacophoran larvae and their roles in the formation of shell plates. Nevertheless, they provide limited molecular information, and shell field morphogenesis remains largely uninvestigated. RESULTS: In the present study, we investigated shell field development in the chiton Acanthochitona rubrolineata based on morphological characteristics and molecular patterns. A total of four types of tissue could be recognized from the shell field of A. rubrolineata. The shell field comprised not only the centrally located, alternatively arranged plate fields and ridges, but also the tissues surrounding them, which were the precursors of the girdle and we termed as the girdle field. The girdle field exhibited a concentric organization composed of two circularly arranged tissues, and spicules were only developed in the outer circle. Dynamic engrailed expression and F-actin (filamentous actin) distributions revealed relatively complicated morphogenesis of the shell field. The repeated units (plate fields and ridges) were gradually established in the shell field, seemingly different from the manners used in the segmentation of Drosophila or vertebrates. The seven repeated ridges also experienced different modes of ontogenesis from each other. In the girdle field, the presumptive spicule-formation cells exhibited different patterns of F-actin aggregations as they differentiate. CONCLUSIONS: These results reveal the details concerning the structure of polyplacophoran shell field as well as its morphogenesis. They would contribute to exploring the mechanisms of polyplacophoran shell development and molluscan shell evolution.

2.
Front Pharmacol ; 13: 813087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359837

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an acute respiratory disease with systemic complications. Therapeutic strategies for COVID-19, including repurposing (partially) developed drugs are urgently needed, regardless of the increasingly successful vaccination outcomes. We characterized two-dimensional (2D) and three-dimensional models (3D) to establish a physiologically relevant airway epithelial model with potential for investigating SARS-CoV-2 therapeutics. Human airway basal epithelial cells maintained in submerged 2D culture were used at low passage to retain the capacity to differentiate into ciliated, club, and goblet cells in both air-liquid interface culture (ALI) and airway organoid cultures, which were then analyzed for cell phenotype makers. Airway biopsies from non-asthmatic and asthmatic donors enabled comparative evaluation of the level and distribution of immunoreactive angiotensin-converting enzyme 2 (ACE2). ACE2 and transmembrane serine proteinase 2 (TMPRSS2) mRNA were expressed in ALI and airway organoids at levels similar to those of native (i.e., non-cultured) human bronchial epithelial cells, whereas furin expression was more faithfully represented in ALI. ACE2 was mainly localized to ciliated and basal epithelial cells in human airway biopsies, ALI, and airway organoids. Cystic fibrosis appeared to have no influence on ACE2 gene expression. Neither asthma nor smoking status had consistent marked influence on the expression or distribution of ACE2 in airway biopsies. SARS-CoV-2 infection of ALI cultures did not increase the levels of selected cytokines. Organotypic, and particularly ALI airway cultures are useful and practical tools for investigation of SARS-CoV-2 infection and evaluating the clinical potential of therapeutics for COVID-19.

3.
iScience ; 12: 232-246, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30711747

RESUMEN

Impaired therapeutic responses to anti-inflammatory glucocorticoids (GC) in chronic respiratory diseases are partly attributable to interleukins and transforming growth factor ß1 (TGF-ß1). However, previous efforts to prevent induction of GC insensitivity by targeting established canonical and non-canonical TGF-ß1 pathways have been unsuccessful. Here we elucidate a TGF-ß1 signaling pathway modulating GC activity that involves LIM domain kinase 2-mediated phosphorylation of cofilin1. Severe, steroid-resistant asthmatic airway epithelium showed increased levels of immunoreactive phospho-cofilin1. Phospho-cofilin1 was implicated in the activation of phospholipase D (PLD) to generate the effector(s) (lyso)phosphatidic acid, which mimics the TGF-ß1-induced GC insensitivity. TGF-ß1 induction of the nuclear hormone receptor corepressor, SMRT (NCOR2), was dependent on cofilin1 and PLD activities. Depletion of SMRT prevented GC insensitivity. This pathway for GC insensitivity offers several promising drug targets that potentially enable a safer approach to the modulation of TGF-ß1 in chronic inflammatory diseases than is afforded by global TGF-ß1 inhibition.

4.
Front Pharmacol ; 9: 738, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30042678

RESUMEN

Transforming growth factor-beta (TGF-ß) is a major mediator of fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). However, therapeutic global inhibition of TGF-ß is limited by unwanted immunosuppression and mitral valve defects. We performed an extensive literature search to uncover a little-known connection between TGF-ß signaling and casein kinase (CK) activity. We have examined the abundance of CK1 delta and epsilon (CK1δ/ε) in lung tissue from IPF patients and non-diseased controls, and investigated whether inhibition of CK1δ/ε with PF670462 inhibits pulmonary fibrosis. CK1δ/ε levels in lung tissue from IPF patients and non-diseased controls were assessed by immunohistochemistry. Anti-fibrotic effects of the CK1δ/ε inhibitor PF670462 were assessed in pre-clinical models, including acute and chronic bleomycin mouse models and in vitro experiments on spheroids made from primary human lung fibroblast cells from IPF and control donors, and human A549 alveolar-like adenocarcinoma-derived epithelial cells. Increased expression of CK1δ and ε in IPF lungs compared to non-diseased controls was accompanied by increased levels of the product, phospho-period 2. In vitro, PF670462 prevented TGF-ß-induced epithelial-mesenchymal transition. The stiffness of IPF-derived spheroids was reduced by PF670462 and TGF-ß-induced fibrogenic gene expression was inhibited. The CK1δ/ε inhibitor PF670462 administered systemically or locally by inhalation prevented both acute and chronic bleomycin-induced pulmonary fibrosis in mice. PF670462 administered in a 'therapeutic' regimen (day 7 onward) prevented bleomycin-induced lung collagen accumulation. Elevated expression and activity of CK1 δ and ε in IPF and anti-fibrogenic effects of the dual CK1δ/ε inhibitor, PF670462, support CK1δ/ε as novel therapeutic targets for IPF.

5.
PLoS Pathog ; 13(1): e1006138, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28046097

RESUMEN

Asthma and chronic obstructive pulmonary disease (COPD) exacerbations are commonly associated with respiratory syncytial virus (RSV), rhinovirus (RV) and influenza A virus (IAV) infection. The ensuing airway inflammation is resistant to the anti-inflammatory actions of glucocorticoids (GCs). Viral infection elicits transforming growth factor-ß (TGF-ß) activity, a growth factor we have previously shown to impair GC action in human airway epithelial cells through the activation of activin-like kinase 5 (ALK5), the type 1 receptor of TGF-ß. In the current study, we examine the contribution of TGF-ß activity to the GC-resistance caused by viral infection. We demonstrate that viral infection of human bronchial epithelial cells with RSV, RV or IAV impairs GC anti-inflammatory action. Poly(I:C), a synthetic analog of double-stranded RNA, also impairs GC activity. Both viral infection and poly(I:C) increase TGF-ß expression and activity. Importantly, the GC impairment was attenuated by the selective ALK5 (TGFßRI) inhibitor, SB431542 and prevented by the therapeutic agent, tranilast, which reduced TGF-ß activity associated with viral infection. This study shows for the first time that viral-induced glucocorticoid-insensitivity is partially mediated by activation of endogenous TGF-ß.


Asunto(s)
Antiinflamatorios/farmacología , Asma/patología , Glucocorticoides/farmacología , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/virología , Factor de Crecimiento Transformador beta/metabolismo , Antivirales/farmacología , Asma/virología , Benzamidas/farmacología , Línea Celular , Dioxoles/farmacología , Farmacorresistencia Viral/fisiología , Activación Enzimática , Células Epiteliales/virología , Humanos , Virus de la Influenza A , Gripe Humana/virología , Infecciones por Picornaviridae/virología , Poli I-C/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/virología , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios , Rhinovirus , ortoaminobenzoatos/farmacología
6.
Respir Res ; 15: 55, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24886104

RESUMEN

BACKGROUND: We have previously shown that transforming growth factor-beta (TGF-beta) impairs glucocorticoid (GC) function in pulmonary epithelial cell-lines. However, the signalling cascade leading to this impairment is unknown. In the present study, we provide the first evidence that TGF-beta impairs GC action in differentiated primary air-liquid interface (ALI) human bronchial epithelial cells (HBECs). Using the BEAS-2B bronchial epithelial cell line, we also present a systematic examination of the known pathways activated by TGF-beta, in order to ascertain the molecular mechanism through which TGF-beta impairs epithelial GC action. METHODS: GC transactivation was measured using a Glucocorticoid Response Element (GRE)-Secreted embryonic alkaline phosphatase (SEAP) reporter and measuring GC-inducible gene expression by qRT-PCR. GC transrepression was measured by examining GC regulation of pro-inflammatory mediators. TGF-beta signalling pathways were investigated using siRNA and small molecule kinase inhibitors. GRα level, phosphorylation and sub-cellular localisation were determined by western blotting, immunocytochemistry and localisation of GRα-Yellow Fluorescent Protein (YFP). Data are presented as the mean ± SEM for n independent experiments in cell lines, or for experiments on primary HBEC cells from n individual donors. All data were statistically analysed using GraphPad Prism 5.0 (Graphpad, San Diego, CA). In most cases, two-way analyses of variance (ANOVA) with Bonferroni post-hoc tests were used to analyse the data. In all cases, P <0.05 was considered to be statistically significant. RESULTS: TGF-beta impaired Glucocorticoid Response Element (GRE) activation and the GC induction of several anti-inflammatory genes, but did not broadly impair the regulation of pro-inflammatory gene expression in A549 and BEAS-2B cell lines. TGF-beta-impairment of GC transactivation was also observed in differentiated primary HBECs. The TGF-beta receptor (ALK5) inhibitor SB431541 fully prevented the GC transactivation impairment in the BEAS-2B cell line. However, neither inhibitors of the known downstream non-canonical signalling pathways, nor knocking down Smad4 by siRNA prevented the TGF-beta impairment of GC activity. CONCLUSIONS: Our results indicate that TGF-beta profoundly impairs GC transactivation in bronchial epithelial cells through activating ALK5, but not through known non-canonical pathways, nor through Smad4-dependent signalling, suggesting that TGF-beta may impair GC action through a novel non-canonical signalling mechanism.


Asunto(s)
Glucocorticoides/metabolismo , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Activación Transcripcional/fisiología , Factor de Crecimiento Transformador beta/fisiología , Bronquios/citología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Línea Celular Tumoral , Glucocorticoides/antagonistas & inhibidores , Glucocorticoides/biosíntesis , Humanos , Mucosa Respiratoria/efectos de los fármacos , Transducción de Señal/fisiología , Activación Transcripcional/efectos de los fármacos
7.
Am J Respir Cell Mol Biol ; 49(5): 751-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23721211

RESUMEN

Plasminogen has a role in airway inflammation. Airway smooth muscle (ASM) cells cleave plasminogen into plasmin, a protease with proinflammatory activity. In this study, the effect of plasminogen on cytokine production by human ASM cells was investigated in vitro. Levels of IL-6 and IL-8 in the medium of ASM cells were increased by incubation with plasminogen (5-50 µg/ml) for 24 hours (P < 0.05; n = 6-9), corresponding to changes in the levels of cytokine mRNA at 4 hours. The effects of plasminogen were attenuated by α2-antiplasmin (1 µg/ml), a plasmin inhibitor (P < 0.05; n = 6-12). Exogenous plasmin (5-15 mU/ml) also stimulated cytokine production (P < 0.05; n = 6-8) in a manner sensitive to serine-protease inhibition by aprotinin (10 KIU/ml). Plasminogen-stimulated cytokine production was increased in cells pretreated with basic fibroblast growth factor (300 pM) in a manner associated with increases in urokinase plasminogen activator expression and plasmin formation. The knockdown of annexin A2, a component of the putative plasminogen receptor comprised of annexin A2 and S100A10, attenuated plasminogen conversion into plasmin and plasmin-stimulated cytokine production by ASM cells. Moreover, a role for annexin A2 in airway inflammation was demonstrated in annexin A2-/- mice in which antigen-induced increases in inflammatory cell number and IL-6 levels in the bronchoalveolar lavage fluid were reduced (P < 0.01; n = 10-14). In conclusion, plasminogen stimulates ASM cytokine production in a manner regulated by annexin A2. Our study shows for the first time that targeting annexin A2-mediated signaling may provide a novel therapeutic approach to the treatment of airway inflammation in diseases such as chronic asthma.


Asunto(s)
Anexina A2/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Plasminógeno/metabolismo , Sistema Respiratorio/metabolismo , Animales , Anexina A2/deficiencia , Anexina A2/genética , Líquido del Lavado Bronquioalveolar/inmunología , Células Cultivadas , Citocinas/genética , Modelos Animales de Enfermedad , Fibrinolisina/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculo Liso/inmunología , Miocitos del Músculo Liso/inmunología , Fosfatidilinositol 3-Quinasa/metabolismo , Neumonía/inmunología , Neumonía/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Sistema Respiratorio/inmunología , Transducción de Señal , Factores de Tiempo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , alfa 2-Antiplasmina/metabolismo
8.
Curr Opin Pharmacol ; 13(3): 386-93, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23735578

RESUMEN

The plasminogen activation system (PAS) and the plasmin it forms have dual roles in chronic respiratory diseases including asthma, chronic obstructive pulmonary disease and interstitial lung disease. Whilst plasmin-mediated airspace fibrinolysis is beneficial, interstitial plasmin contributes to lung dysfunction because of its pro-inflammatory and tissue remodeling activities. Recent studies highlight the potential of fibrinolytic agents, including small molecule inhibitors of plasminogen activator inhibitor-1 (PAI-1), as treatments for chronic respiratory disease. Current data also suggest that interstitial urokinase plasminogen activator is an important mediator of lung inflammation and remodeling. However, further preclinical characterization of uPA as a drug target for lung disease is required. Here we review the concept of selectively targeting the contributions of PAS to treat chronic respiratory disease.


Asunto(s)
Enfermedades Pulmonares/metabolismo , Activadores Plasminogénicos/metabolismo , Animales , Humanos
9.
Pulm Pharmacol Ther ; 26(1): 64-74, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22634303

RESUMEN

Airway smooth muscle (ASM) is the main regulator of bronchomotor tone. Extensive studies show that in addition to their physical property, human airway smooth muscle (ASM) cells can participate in inflammatory processes modulating the initiation, perpetuation, amplification, and perhaps resolution of airway inflammation. Upon stimulation or interaction with immune cells, ASM cells produce and secrete a variety of inflammatory cytokines and chemokines, cell adhesion molecules, and extracellular matrix (ECM) proteins. These released mediators can, in turn, contribute to the inflammatory state, airway hyperresponsiveness, and airway remodeling present in asthma. As our knowledge of ASM myocyte biology improves, novel bioactive factors are emerging as potentially important regulators of inflammation. This review provides an overview of our understanding of some of these molecules, identifies rising questions, and proposes future studies to better define their role in ASM cell modulation of inflammation and immunity in the lung and respiratory diseases.


Asunto(s)
Inflamación/patología , Miocitos del Músculo Liso/metabolismo , Enfermedades Respiratorias/fisiopatología , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Animales , Asma/inmunología , Asma/fisiopatología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Humanos , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/fisiopatología , Músculo Liso/citología , Músculo Liso/inmunología , Músculo Liso/metabolismo , Miocitos del Músculo Liso/inmunología , Enfermedades Respiratorias/inmunología
10.
Am J Respir Cell Mol Biol ; 48(3): 346-53, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23239497

RESUMEN

In asthma, basic fibroblast growth factor (FGF-2) plays an important (patho)physiological role. This study examines the effects of FGF-2 on the transforming growth factor-ß (TGF-ß)-stimulated differentiation of airway smooth muscle (ASM) cells in vitro. The differentiation of human ASM cells after incubation with TGF-ß (100 pM) and/or FGF-2 (300 pM) for 48 hours was assessed by increases in contractile protein expression, actin-cytoskeleton reorganization, enhancements in cell stiffness, and collagen remodeling. FGF-2 inhibited TGF-ß-stimulated increases in transgelin (SM22) and calponin gene expression (n = 15, P < 0.01) in an extracellular signal-regulated kinase 1/2 (ERK1/2) signal transduction-dependent manner. The abundance of ordered α-smooth muscle actin (α-SMA) filaments formed in the presence of TGF-ß were also reduced by FGF-2, as was the ratio of F-actin to G-actin (n = 8, P < 0.01). Furthermore, FGF-2 attenuated TGF-ß-stimulated increases in ASM cell stiffness and the ASM-mediated contraction of lattices, composed of collagen fibrils (n = 5, P < 0.01). However, the TGF-ß-stimulated production of IL-6 was not influenced by FGF-2 (n = 4, P > 0.05), suggesting that FGF-2 antagonism is selective for the regulation of ASM cell contractile protein expression, organization, and function. Another mitogen, thrombin (0.3 U ml(-1)), exerted no effect on TGF-ß-regulated contractile protein expression (n = 8, P > 0.05), α-SMA organization, or the ratio of F-actin to G-actin (n = 4, P > 0.05), suggesting that the inhibitory effect of FGF-2 is dissociated from its mitogenic actions. The addition of FGF-2, 24 hours after TGF-ß treatment, still reduced contractile protein expression, even when the TGF-ß-receptor kinase inhibitor, SB431542 (10 µM), was added 1 hour before FGF-2. We conclude that the ASM cell differentiation promoted by TGF-ß is antagonized by FGF-2. A better understanding of the mechanism of action for FGF-2 is necessary to develop a strategy for therapeutic exploitation in the treatment of asthma.


Asunto(s)
Diferenciación Celular/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Músculo Liso/citología , Miocitos del Músculo Liso/citología , Sistema Respiratorio/citología , Sistema Respiratorio/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Actinas/genética , Actinas/metabolismo , Asma/genética , Asma/metabolismo , Asma/patología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Calponinas
11.
Int Immunopharmacol ; 11(8): 1002-11, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21356342

RESUMEN

Mast cells play important roles in allergic and inflammatory diseases. Efforts to better understand human mast cell activation and develop novel inhibitory agents have been hampered by the lack of suitable human mast cell lines. The HMC-1 mast cell line has been extensively used, but lacks native expression of the human high-affinity IgE receptor FcεRI limiting its applications. We have stably transfected HMC-1 cells with the IgE-binding α-subunit of FcεRI to generate HMCα cells that are antigen-responsive. We have used flow cytometry, cell signaling assays, pharmacological pathway inhibitors and cell functional assays to characterize the properties of HMCα cells. IgE/antigen responses were compared with those of the adenosine receptor agonist NECA. Surface expression of FcεRI in HMCα cells was demonstrated and was enhanced by prior sensitization with IgE. Activation of HMCα cells with IgE/antigen did not produce degranulation, but did lead to release of numerous cytokines. Whilst there was no measurable increase of intracellular Ca(2+) or marked general changes in protein tyrosine phosphorylation, IgE/antigen stimulation of HMCα cells enhanced phosphorylation of p38(MAPK) and Erk. Inhibitors of these pathways, as well as the src kinase inhibitor PP2, attenuated IgE/antigen-induced cytokine release. In summary, we have generated and characterized HMCα cells and show that they are a useful and relevant human mast cell model to examine FcεRI stabilization, signaling and mediator release. We envisage that HMCα cells will have utility in understanding the importance of mast cells in human allergic disease and in assessing the activity of novel anti-allergic compounds.


Asunto(s)
Antígenos/inmunología , Citocinas/biosíntesis , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Mastocitos/inmunología , Receptores de IgE/inmunología , Animales , Antígenos/metabolismo , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Mastocitos/metabolismo , Pirimidinas/farmacología , Ratas , Receptores de IgE/genética , Receptores de IgE/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
12.
Am J Respir Cell Mol Biol ; 44(5): 665-72, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20595464

RESUMEN

IgE-Fc receptors and IgG-Fc receptors are expressed on hematopoietic cells, but some evidence suggests that these receptors are also found on nonhematopoietic cells, including human airway smooth muscle (hASM) cells. Our study characterizes the expression of IgE-Fc receptors (FcεRI/CD23) and IgG-Fc receptors (FcγRs-I, -II, and -III) in cultured hASM cells by flow cytometry and Western blotting, and the functional activity of receptors was determined through quantification of cell proliferation and released cytokines. Expression of Fc receptor-linked intracellular signaling proteins and phosphorylation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1/2 and p38(MAPK) in hASM cells was examined by Western blotting. Expression of FcεRI and CD23 was not detectable in hASM cells. However, FcγRI and FcγRII were shown to be expressed on these cells. Specific antibodies, validated using transfected cell lines, revealed that the inhibitory IgG receptor, FcγRIIb, was the most abundant Fc receptor subtype expressed. Although cross-linking FcγR with heat-aggregated γ globulin (HAGG) did not induce detectable cell stimulation, pretreating hASM cells with HAGG significantly inhibited IL-1α-induced increases in cytokine levels and basic fibroblast growth factor-induced cell proliferation. This inhibitory effect of HAGG was abrogated by preincubation of cells with an anti-FcγRIIb antigen-binding fragment (Fab). Expression of proteins involved in the canonical FcγRIIb inhibitory signaling pathway was established in hASM cells. Pretreatment of hASM cells with HAGG significantly inhibited IL-1α- and basic fibroblast growth factor-induced extracellular signal-regulated kinase 1/2 and p38(MAPK) phosphorylation. This study identifies functional expression of FcγRIIb in hASM cells, with the potential to suppress their remodeling and immunomodulatory roles.


Asunto(s)
Bronquios/metabolismo , Regulación Enzimológica de la Expresión Génica , Inmunoglobulina G/química , Miocitos del Músculo Liso/citología , Receptores Fc/metabolismo , Animales , Proliferación Celular , Separación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Citometría de Flujo , Humanos , Sistema Inmunológico , Sistema de Señalización de MAP Quinasas , Mastocitos/citología , Ratones , Músculo Liso/enzimología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...