Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Neuropsychiatr Dis Treat ; 20: 765-775, 2024.
Article En | MEDLINE | ID: mdl-38577632

Purpose: The SARS-CoV-2 infection cases are increasing rapidly in neuro-intensive care units (neuro-ICUs) at the beginning of 2023 in China. We aimed to characterize the prevalence, risk factors, and prognosis of critically ill patients treated in neuro-ICUs. Materials and Methods: In the prospective, multicenter, observational registry study, critically ill patients with intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), and traumatic brain injury (TBI) admitted to eight Chinese neuro-ICUs between Feb 16, 2023, to Apr 30, 2023 were enrolled for the study. Mortality and ICU stay day were used as the primary outcomes. Results: 131 patients were finally included and analyzed (mean age 60.36 years [SD 13.81], 64.12% male, 39.69% SARS-CoV-2 infected). The mortality is higher in the SARS-CoV-2 infection group without statistical signification (7.69% vs 5.06%, p>0.05). The length of stay (LOS) in neuro-ICUs was significantly longer among the SARS-CoV-2 infection patients (7(1-12) vs 4(1-8), p<0.01), with increased viral pneumonia occurrence (58.54% vs 7.32%, p<0.01). SARS-CoV-2 infection, surgery, and low GCS scores were independent risk factors for prolonged LOS, and respiratory/renal failure were independent risk factors for death. Conclusion: Based on the present neuro-ICU cohort, SARS-CoV-2 infection was a significant risk for the prolonged LOS of neuro-critically ill patients. Trial Registration: Registered with Chictr.org.cn (ChiCTR2300068355) at 16 February 2023, Prospective registration. https://www.chictr.org.cn/showproj.html?proj=188252.

2.
Neurol Ther ; 13(2): 475-495, 2024 Apr.
Article En | MEDLINE | ID: mdl-38367176

INTRODUCTION: No evidence has established a direct causal relationship between early microcirculation disturbance after aneurysmal subarachnoid hemorrhage (aSAH) and neurological function prognosis, which is the key pathophysiological mechanism of early brain injury (EBI) in patients with aSAH. METHODS: A total of 252 patients with aSAH were enrolled in the Neurosurgical Intensive Care Unit of Southwest Hospital between January 2020 and December 2022 and divided into the no neurological deterioration, early neurological deterioration, and delayed neurological deterioration groups. Indicators of microcirculation disorders in EBI included regional cerebral oxygen saturation (rSO2) measured by near-infrared spectroscopy (NIRS), brain oxygen monitoring, and other clinical parameters for evaluating neurological function and determining the prognosis of patients with aSAH. RESULTS: Our data suggest that the rSO2 is generally lower in patients who develop neurological deterioration than in those who do not and that there is at least one time point in the population of patients who develop neurological deterioration where left and right cerebral hemisphere differences can be significantly monitored by NIRS. An unordered multiple-classification logistic regression model was constructed, and the results revealed that multiple factors were effective predictors of early neurological deterioration: reoperation, history of brain surgery, World Federation of Neurosurgical Societies (WFNS) grade 4-5, Fisher grade 3-4, SAFIRE grade 3-5, abnormal serum sodium and potassium levels, and reduced rSO2 during the perioperative period. However, for delayed neurological deterioration in patients with aSAH, only a history of brain surgery and perioperative RBC count were predictive indicators. CONCLUSIONS: The rSO2 concentration in patients with neurological deterioration is generally lower than that in patients without neurological deterioration, and at least one time point in the population with neurological deterioration can be significantly monitored via NIRS. However, further studies are needed to determine the role of microcirculation and other predictive factors in the neurocritical management of EBI after aSAH, as these factors can reduce the incidence of adverse outcomes and mortality during hospitalization.

3.
Chin Neurosurg J ; 9(1): 35, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38062522

BACKGROUND: Hematoma expansion is a determinant of poor outcome of intracerebral hemorrhage but occurs frequently, especially in warfarin-associated intracerebral hemorrhage (W-ICH). In the present study, we employ the warfarin-associated intracerebral hemorrhage (W-ICH) rat model, to explore the efficacy and potential mechanism of glibenclamide pretreatment on hematoma expansion after intracerebral hemorrhage, hoping to provide proof of concept that glibenclamide in stroke primary and secondary prevention is also potentially beneficial for intracerebral hemorrhage patients at early stage. METHODS: In the present study, we tested whether glibenclamide, a common hypoglycemic drug, could attenuate hematoma expansion in a rat model of W-ICH. Hematoma expansion was evaluated using magnetic resonance imaging; brain injury was evaluated by brain edema and neuronal death; and functional outcome was evaluated by neurological scores. Then blood-brain barrier integrity was assessed using Evans blue extravasation and tight junction-related protein. RESULTS: The data indicated that glibenclamide pretreatment significantly attenuated hematoma expansion at 24 h after W-ICH, thus mitigating brain edema and neuronal death and promoting neurological function recovery, which may benefit from alleviating blood-brain barrier disruption by suppressing matrix metallopeptidase-9. CONCLUSIONS: The results indicate that glibenclamide pretreatment in stroke primary and secondary prevention might be a promising therapy for hematoma expansion at the early stage of W-ICH.

4.
Brain Behav ; 13(7): e3041, 2023 07.
Article En | MEDLINE | ID: mdl-37137534

OBJECTIVE: As a complex and acute brain dysfunction, if postoperative delirium (POD) occurs in the postoperative period, it will lead to a prolonged length of stay in the critical care unit, with increased hospitalization costs and higher mortality. A few case reports inspired us to pay close attention to pituitary tumor-associated delirium. We hypothesized that the changes in hormone levels after pituitary tumor resection might be associated with POD occurrence. METHODS: Retrospective analysis was performed on data from a single-center cohort study conducted at Southwest Hospital between January 2018 and May 2022. A total of 360 patients with pituitary tumors who underwent endoscope-assisted transsphenoidal pituitary tumor resection were divided into two groups at a 1:3 ratio, with 36 patients in the POD group and 108 patients in the non-POD group matched by propensity score, age, sex, and tumor size. Basic characteristics, pituitary adenoma features, endocrine levels and other biochemical indicators, and Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) for postoperative delirium were documented for further analysis. RESULTS: Lower insulin-like growth factor-1 (IGF-1, p = .024) and corticotropin-releasing hormone (CRH, p = .005) levels were closely associated with postoperative delirium and with high levels of blood glucose (GLU, p = .023) after surgery. Subsequent analysis indicated that serum potassium (OR: 0.311, 95% CI 0.103-0.935), sodium (OR: 0.991, 95% CI 0.983-1.000), CRH (OR: 0.964, 95% CI 0.936-0.994), and GLU (OR: 1.654, 95% CI 1.137-2.406) levels in the perioperative period were independent risk factors for delirium. CONCLUSIONS: Our study indicated that lower serum CRH, potassium, sodium, and GLU levels may be associated with the occurrence of POD after endoscopic-assisted transsphenoidal surgery. These data provide preliminary evidence for the management of POD in pituitary adenoma patients after surgery. Further studies are needed to identify pharmacological and nonpharmacological multicomponent treatment strategies.


Adenoma , Emergence Delirium , Pituitary Neoplasms , Humans , Pituitary Neoplasms/surgery , Pituitary Neoplasms/complications , Pituitary Neoplasms/pathology , Cohort Studies , Retrospective Studies , Emergence Delirium/complications , Endoscopes/adverse effects , Sodium , Adenoma/surgery , Adenoma/complications , Adenoma/pathology , Hormones , Risk Factors , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Treatment Outcome
5.
Mol Neurobiol ; 60(6): 3365-3378, 2023 Jun.
Article En | MEDLINE | ID: mdl-36853431

Spinal cord injury (SCI) usually introduces permanent or long-lasting neurological impairments. Maintaining the integrity of the limited number of white matter bundles (5-10%) preserves wholly or partially locomotor following SCI. Considering that the basic structure of white matter bundles is axon wrapped by oligodendrocytes, promoting oligodendrocytes survival might be a feasible strategy for reducing white matter injury (WMI) after SCI. Oligodendrocytes are rich in unsaturated fatty acid and susceptible to ferroptosis-induced damage. Hence, exploring method to reduce ferroptosis is supposed to expedite oligodendrocytes survival, thereafter mitigating WMI to facilitate functional recovery post-SCI. Here, the results indicated the administration of hepcidin reduced iron accumulation to promote oligodendrocytes survival and to decrease spinal cord atrophy, therefore facilitating functional recovery. Then, the WMI was evidently decreased owing to attenuating ferroptosis. Subsequently, the results revealed that the expression of divalent metal transporter 1 (DMT1) and transferrin receptor (TfR) was expressed in CC1+ cells. The expression level of DMT1 and TfR was significantly increased, while this phenomenon was obviously neutralized with the administration of hepcidin in the epicenter of spinal cord after SCI. Afterward, the application of hepcidin downregulated reactive oxygen species (ROS) overload, which was evidently increased with the treatment of 20 µM FeCl3, therefore increasing cell viability and reducing lactate dehydrogenase (LDH) activity through downregulating the expression of DMT1 and TfR to inhibit ferroptosis in oligodendrocyte progenitor cells (OPCs). The present study provides evidence that the application of hepcidin facilitates oligodendrocytes survival to alleviate WMI via reducing the expression of DMT1 and TfR.


Ferroptosis , Spinal Cord Injuries , White Matter , Humans , White Matter/metabolism , Hepcidins/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Oligodendroglia/metabolism
6.
Front Hum Neurosci ; 16: 834427, 2022.
Article En | MEDLINE | ID: mdl-35845240

Background: The prognosis of hypertensive intracerebral hemorrhage (HICH) is poor at high altitudes. The objective of this study was to explore whether hyperbaric oxygen (HBO) can improve the results of computed tomography perfusion (CTP) imaging and the neurological function of patients with HICH, and influence the hemoglobin concentration. Method: The patients with HICH were treated with puncture and drainage. Twenty-one patients (51.22% of 41 patients in total) were treated with HBO after the operation, and the other patients received conventional treatment. CTP was performed twice, and all indices were measured. Scatter plots were used to determine the effect of hemoglobin concentration on CTP imaging. Receiver operating characteristic (ROC) curves were plotted to analyze the effects of hemoglobin concentration and hematoma volume on recovery results. The patients were followed up for 6 months. Results: Forty-one patients with HICH were treated with puncture and drainage. In total, 21 were treated with HBO after the operation, and 20 received conventional treatment as the control group. No significant differences in the CBV and CBF values of the two groups were noted before treatment. After 10 days, the values of CBV and CBF in the HBO group were significantly higher than those in the control group. A scatter diagram showed there was no significant in the HBO group, but significant correlation for the CBV and CBF values in the control group's hematoma center and margin. The ROC curves showed that hematoma volume had an influence on prognosis of the control group. The Glasgow Coma Scale (GOS) scores of the HBO group were significantly higher than those of the control group (p < 0.05). Conclusions: HBO therapy can improve the postoperative CBV and CBF values of patients with HICH and ameliorate their prognoses. There was no significant correlation between HBO group and hemoglobin concentration on admission.

8.
Mol Neurobiol ; 59(1): 161-176, 2022 Jan.
Article En | MEDLINE | ID: mdl-34635980

Spinal cord injury (SCI), a devastating neurological impairment, usually imposes a long-term psychological stress and high socioeconomic burden for the sufferers and their family. Recent researchers have paid arousing attention to white matter injury and the underlying mechanism following SCI. Ferroptosis has been revealed to be associated with diverse diseases including stroke, cancer, and kidney degeneration. Ferrostatin-1, a potent inhibitor of ferroptosis, has been illustrated to curb ferroptosis in neurons, subsequently improving functional recovery after traumatic brain injury (TBI) and SCI. However, the role of ferroptosis in white matter injury and the therapeutic effect of ferrostatin-1 on SCI are still unknown. Here, our results indicated that ferroptosis played a pivotal role in the secondary white matter injury, and ferrostatin-1 could reduce iron and reactive oxygen species (ROS) accumulation and downregulate the ferroptosis-related genes and its products of IREB2 and PTGS2 to further inhibit ferroptosis in oligodendrocyte, finally reducing white matter injury and promoting functional recovery following SCI in rats. Meanwhile, the results demonstrated that ferrostatin-1 held the potential of inhibiting the activation of reactive astrocyte and microglia. Mechanically, the present study deciphers the potential mechanism of white matter damage, which enlarges the therapeutic effects of ferrostatin-1 on SCI and even in other central nervous system (CNS) diseases existing ferroptosis.


Cyclohexylamines/pharmacology , Ferroptosis/drug effects , Phenylenediamines/pharmacology , Spinal Cord Injuries/metabolism , Spinal Cord/drug effects , White Matter/drug effects , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Female , Iron/metabolism , Microglia/drug effects , Microglia/metabolism , Motor Activity/drug effects , Neurons/drug effects , Neurons/metabolism , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Recovery of Function/drug effects , Spinal Cord/metabolism , White Matter/metabolism
9.
Front Oncol ; 11: 757650, 2021.
Article En | MEDLINE | ID: mdl-34796112

Long non-coding RNAs (lncRNAs) serve essential roles on various biological functions. Previous studies have indicated that lncRNAs are involved in the occurrence, growth and infiltration of brain tumors. LncRNA H19 is key regulator in the pathogenesis of gliomas, but the underlying mechanisms of H19-regulated tumor progression remain unknown. Therefore, we investigated the effects and mechanism of action of lncRNA H19 on the homeostasis of glioma cells. As a novel oncogenic factor, up-regulation of H19 was able to promote the proliferation of glioma cells by targeting miR-200a. Furthermore, elevated miR-200a levels could reverse H19-induced cell growth and metastasis. Overexpression of miR-200a could significantly suppress the proliferation, migration and invasion of glioma cells. These biological behavior changes in glioma cells were dependent on the binding to potential target genes including CDK6 and ZEB1. CDK6 could promote cell proliferation and its expression was remarkably increased in glioma. In addition, up-regulation of miR-200a lead to reduction of CDK6 expression and inhibit the proliferation of glioma cells. ZEB1 could be a putative target gene of miR-200a in glioma cells. Thus, miR-200a might suppress cell invasion and migration through down-regulating ZEB1. Moreover, overexpression of miR-200a resulted in down-regulation of ZEB1 and further inhibited malignant phenotype of glioma cells. In summary, our findings suggested that the expression of H19 was elevated in glioma, which could promote the growth, invasion and migration of tumor cells via H19/miR-200a/CDK6/ZEB1 axis. This novel signaling pathway may be a promising candidate for the diagnosis and targeted treatment of glioma.

10.
Sci Rep ; 11(1): 9374, 2021 04 30.
Article En | MEDLINE | ID: mdl-33931691

Burns are one of the most common injuries in daily life for all ages of population. This study was to investigate the epidemiology and outcomes among burn patients in one of the largest burn centers in the southwest of China. The study was performed at the Institute of Burn Research in the first affiliated with the Army Medical University (AMU). A total of 17,939 burn patients were included in this retrospective study. Information regarding burn epidemiology and outcomes in 17 years were collected, calculated and compared. The age ranged from 257 days to 95 years old. Scalding and flame were the two most common causes to burn injuries, comprising of 91.96% in total. Limbs, head/face/neck, and trunk were the most frequently occurred burn sites, with the number and the percent of 12,324 (68.70%), 7989 (44.53%), and 7771 (43.32%), respectively. The average total body surface area (TBSA) was 13.64 ± 16.83% (median 8%) with a range of 0.1-100%. A total of 874 (4.9%) patients had TBSA > 50%. The presence of a burn with an inhalation injury was confirmed in 543 patients (3.03%). The average LOS was 32.11 ± 65.72 days (median: 17 days). Eventually, the retrospective analysis resulted in the development of a burn management continuum used for developing strategies to prevent and manage severe burns. The annual number of burn injuries has kept decreasing, which was partially attributed to the increased awareness and education of burn prevention and the improved burn-preventative circumstances. However, the burn severity and the economic burden were still in a high level. And the gender difference and age difference should be considered when making individualized interventions and rehabilitative treatments.


Burn Units/standards , Burns/therapy , Hospitalization/statistics & numerical data , Length of Stay/statistics & numerical data , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Burns/epidemiology , Child , Child, Preschool , China/epidemiology , Disease Management , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Factors , Sex Factors , Young Adult
11.
J Neurosurg ; 135(4): 1105-1112, 2021 Jan 08.
Article En | MEDLINE | ID: mdl-33418533

OBJECTIVE: Tissue plasminogen activator (tPA) fibrinolysis did not improve functional outcomes of patients with intraventricular hemorrhage (IVH), largely because of the unsatisfactory clot clearance. The presence of neutrophil extracellular traps (NETs) within the clot has been confirmed to impair tPA fibrinolysis, but the mechanism has been unclear. The authors hypothesized that cell-free DNA (cfDNA), the main framework of NETs, might be the important reason for the fibrinolysis resistance, and they validated the hypothesis, hoping to provide a new target to promote intraventricular fibrinolysis. METHODS: First, cfDNA was detected in IVH clots by immunofluorescence staining in a rat model of IVH. Second, after blood (with or without exogenous cfDNA) intraventricular injection, IVH rats were given intraventricular infusion of 2 µl of saline, tPA, or tPA + DNase1 randomly. Then, the ventricular volume, animal behavior, and reactive astrocyte proliferation were assessed. Third, the IVH clots were collected for fibrinolysis assay in vitro. Finally, the effects of exogenous cfDNA in IVH were evaluated. RESULTS: The presence of cfDNA in clots was observed as early as 1 hour after IVH. Compared with the whole-blood model, blood + cfDNA caused more severe ventricular dilation (day 7: blood 32.47 ± 2.096 mm3 vs blood + DNA 40.09 ± 2.787 mm3, p < 0.05), increased fibrinolysis resistance to tPA (day 7: tPA + DNA 26.04 ± 1.318 mm3 vs tPA 22.15 ± 1.706 mm3, p < 0.05), and further deteriorated the functional defects in rats (blood vs blood + DNA, p < 0.05). Degradation of cfDNA by DNase1 further enhanced the fibrinolysis effects on relieving the ventricular dilation (day 7: tPA + DNase1 11.67 ± 2.023 mm3 vs tPA, p < 0.05), improving the functional outcome (tPA vs tPA + DNase1, p < 0.05) and reducing periventricular astrocyte proliferation. CONCLUSIONS: cfDNA impaired tPA fibrinolysis for IVH, and degradation of cfDNA may be a new target to improve this condition.

12.
Neural Regen Res ; 16(2): 312-318, 2021 Feb.
Article En | MEDLINE | ID: mdl-32859790

Cattle encephalon glycoside and ignotin (CEGI) injection is known as a multi-target neuroprotective drug that contains numerous liposoluble molecules, such as polypeptides, monosialotetrahexosyl ganglioside (GM-1), free amino acids, hypoxanthine and carnosine. CEGI has been approved by the Chinese State Food and Drug Administration and widely used in the treatments of various diseases, such as stroke and Alzheimer's disease. However, the neuroprotective effects of CEGI beyond the time window of thrombolysis (within 4.5 hours) on acute ischemic stroke remain unclear. This study constructed a rat middle cerebral artery occlusion model by suture-occluded method to simulate ischemic stroke. The first daily dose was intraperitoneally injected at 8 hours post-surgery and the CEGI treatments continued for 14 days. Results of the modified five-point Bederson scale, beam balance test and rotameric test showed the neurological function of ischemic stroke rats treated with 4 mL/kg/d CEGI improved significantly, but the mortality within 14 days did not change significantly. Brain MRI and 2,3,5-triphenyltetrazolium chloride staining confirmed that the infarct size in the 4 mL/kg/d CEGI-treated rats was significantly reduced compared with ischemic insult only. The results of transmission electron microscopy and double immunofluorescence staining showed that the hippocampal neuronal necrosis in the ischemic penumbra decreased whereas the immunopositivity of new neuronal-specific protein doublecortin and the percentage of Ki67/doublecortin positive cells increased in CEGI-treated rats compared with untreated rats. Our results suggest that CEGI has an effective neuroprotective effect on ischemic stroke when administered after the time window of thrombolysis. The study was approved by the Animal Ethics Committee of The Third Military Medical University, China.

13.
Neurosci Lett ; 731: 135011, 2020 07 13.
Article En | MEDLINE | ID: mdl-32497735

Urokinase-type plasminogen activator (uPA) was demonstrated to alleviate kaolin-induced communicating hydrocephalus via inhibiting subarachnoid space fibrosis, but the exact mechanism remains elusive. Thus, this study was designed to investigate if hepatocyte growth factor (HGF), which plays a vital role in uPA-triggered inhibiting of fibrosis in multiple systems, is involved in this process in hydrocephalus. There were 2 parts in this study. First, hydrocephalus was induced in rats by basal cistern injection of kaolin. Then rats were treated with saline or uPA and brain tissue and CSF were collected for Western blot and enzyme-linked immuno sorbent assay (ELISA) four days later. Second, kaolin-induced hydrocephalus rats were treated with saline, uPA, uPA + PHA665752 (antagonist of HGF) or PHA665752. Some animals received MRI four weeks later and brains were used for immunofluorescence. The others were euthanized four days later for ELISA. Both levels of total and activated HGF in the CSF was increased after uPA injections, but related mRNA expression of HGF showed no statistical significance when compared with the control group. Further, the effects of uPA that alleviating ventricular enlargement, subarachnoid fibrosis and reactive astrocytosis were partially reversed by PHA665752. Moreover, PHA665752 partially abolished uPA-induced reduction of transforming growth factor- ß1(TGF- ß1) level in CSF. Our data suggest that uPA effectively inhibited subarachnoid fibrosis and restricted the development of communicating hydrocephalus in rats in part by promoting HGF release and activation, which may further regulate the TGF-ß1 expression in CSF.


Brain/drug effects , Hepatocyte Growth Factor/metabolism , Hydrocephalus/metabolism , Transforming Growth Factor beta1/cerebrospinal fluid , Urokinase-Type Plasminogen Activator/pharmacology , Animals , Brain/metabolism , Disease Models, Animal , Hydrocephalus/drug therapy , Hydrocephalus/pathology , Kaolin/pharmacology , Male , Rats, Sprague-Dawley , Urokinase-Type Plasminogen Activator/metabolism
14.
Aging (Albany NY) ; 12(9): 8029-8048, 2020 05 07.
Article En | MEDLINE | ID: mdl-32379706

Stroke is one of the leading causes of death worldwide that also result in long-term disability. Endogenous neural stem/progenitor cells (NSPCs) within subventricular (SVZ) and dentate gyrus (DG) zone, stimulated by cerebral infarction, can promote neural function recovery. However, the proliferation of eNSPCs triggered by ischemia is not enough to induce neural repair, which may contribute to the permanent disability in stroke patients. In this study, our results showed that following the treatment with artesunate (ART, 150 mg/kg), the functional recovery was significantly improved, the infarct volume was notably reduced, and the expression of Nestin, a proliferation marker of NSPCs in the infarcted cortex, was also increased. Additionally, the proliferative activity of NSPCs with or without oxygen-glucose deprivation/reperfusion was significantly promoted by ART treatment, and the therapeutic concentration was 0.8 µmol/L (without OGD/R) or 0.4 µmol/L (with OGD/R) in the in vitro model. Furthermore, the effects of ART can be abolished by the treatment of PI3K inhibitor wortmannin. The expression levels of related molecules in PI3K/Akt/FOXO-3a/p27kip1 signaling pathway (p-AKT, p-FOXO-3a, p27kip1) were examined using western blotting. The results suggested ART could inhibit the transcriptional function of FOXO-3a by inducing its phosphorylation, subsequently downregulating p27kip1 and enhancing neural stem cell proliferation in the infarcted cortex via PI3K/AKT signaling, further alleviating ischemia-reperfusion injury after ischemic stroke.


Artesunate/pharmacology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Neural Stem Cells/pathology , Reperfusion Injury/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Down-Regulation , Forkhead Transcription Factors/metabolism , Neural Stem Cells/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction
15.
Clin Neurol Neurosurg ; 194: 105820, 2020 07.
Article En | MEDLINE | ID: mdl-32315941

OBJECTIVE: To elucidate the relationship between the risk factors and hematoma expansion(HE)shapes. PATIENTS AND METHODS: From February 2013 to November 2018, 60 patients diagnosed as basal ganglia ICH were divided into the filled type hematoma expansion group (FTE group) and the expanded type hematoma expansion group (ETE group). we performed follow-up CT and three-dimensional reconstruction for the patients and compared the hematoma before and after the expansion of size and extent. RESULTS: The regression analysis showed that the irregular sign (odds ratio, 3.64; 95 % CI, 1.46-9.12), black hole sign (odds ratio, 3.85; 95 % CI, 1.40-10.60), blend sign (odds ratio, 2.86; 95 % CI, 1.03-7.95), and early use of dehydration (odds ratio, 4.59; 95 % CI, 1.59-13.19) were possible risk factors for the ETE group, while the high systolic blood pressure (odds ratio, 1.51; 95 % CI, 1.04-2.30), early use of dehydration (odds ratio, 3.27; 95 % CI, 1.10-9.69) and low density low-density band (odds ratio, 4.52; 95 % CI, 1.54-13.28) were possible risk factors for the FTE group. CONCLUSIONS: The irregular sign, black hole sign, blend sign and early use of dehydration may be the main risk factors for ETE, whereas early use of dehydration, high systolic blood pressure, and low density low-density band may be the main risk factors for FTE.


Hematoma/diagnostic imaging , Intracranial Hemorrhage, Hypertensive/diagnostic imaging , Adult , Aged , Basal Ganglia/growth & development , Basal Ganglia/pathology , Dehydration , Disease Progression , Female , Glasgow Coma Scale , Hematoma/pathology , Humans , Hypertension/complications , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Intracranial Hemorrhage, Hypertensive/pathology , Male , Middle Aged , Predictive Value of Tests , Risk Factors , Tomography, X-Ray Computed
16.
World Neurosurg ; 137: e9-e17, 2020 05.
Article En | MEDLINE | ID: mdl-31518742

BACKGROUND: With little information available on axonal and myelin damage surrounding the contusion, the study of spinal cord injury (SCI) so far has focused on neuronal death. In this study, we investigated the role of iron overload in long-term oligodendroglia death and progressive white matter damage to rats after SCI using the iron chelator, deferoxamine (DFX). METHODS: Female Sprague-Dawley rats received either a contusion at T10 or sham-surgery. The rats were treated with DFX or vehicle. All rats were evaluated in behavioral assessments and then euthanized at different time points. Spinal cords were analyzed by diaminobenzidine-enhanced Perls' staining, non-heme iron measurements, Western blotting, immunohistochemistry, and transmission electron microscopy. RESULTS: Iron accumulation after SCI resulted in the upregulation of transferrin receptor and divalent metal transporter 1, which exacerbated the intracellular iron overload. DFX treatment reduced iron overload-induced delayed oligodendrocyte death (e.g., 21 days: 47.12 ± 10.5 vs. 20.02 ± 9.4 x 103/mm2 in the vehicle-treated group, n = 4, P < 0.05). After SCI, the markers of axonal damage and demyelination were increased in white matter in the vehicle-treated group compared with the DFX-treated group (P < 0.05). CONCLUSIONS: Iron overload plays an important role in progressive white matter damage after SCI. DFX may be an effective treatment for white matter damage after SCI.


Deferoxamine/therapeutic use , Oligodendroglia/drug effects , Siderophores/therapeutic use , Spinal Cord Injuries/drug therapy , White Matter/drug effects , Animals , Deferoxamine/pharmacology , Disease Models, Animal , Female , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Rats , Rats, Sprague-Dawley , Receptors, Transferrin/metabolism , Siderophores/pharmacology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , White Matter/metabolism , White Matter/pathology
17.
Transl Stroke Res ; 11(3): 503-516, 2020 06.
Article En | MEDLINE | ID: mdl-31696415

Iron-mediated toxicity is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study was performed to investigate the noninvasive neuroimaging method for quantifying brain iron content using a minipig ICH model and assess the effects of minocycline treatment on ICH-induced iron overload and brain injury. The minipig ICH model was established by injecting 2 ml of autologous blood into the right basal ganglia, which were then subjected to the treatments of minocycline and vehicle. Furthermore, the quantitative susceptibility mapping (QSM) was used to quantify iron content, and diffusion tensor imaging (DTI) was performed to evaluate white matter tract. Additionally, we also performed immunohistochemistry, Western blot, iron assay, Perl's staining, brain water content, and neurological score to evaluate the iron overload and brain injury. Interestingly, we found that the ICH-induced iron overload could be accurately quantified by the QSM. Moreover, the minocycline was quite beneficial for protecting brain injury by reducing the lesion volume and brain edema, preventing brain iron accumulation, downsizing ventricle enlargement, and alleviating white matter injury and neurological deficits. In summary, we suggest that the QSM be an accurate and noninvasive method for quantifying brain iron level, and the minocycline may be a promising therapeutic agent for patients with ICH.


Brain/diagnostic imaging , Brain/pathology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Chelating Agents/administration & dosage , Iron/toxicity , Magnetic Resonance Imaging , Minocycline/administration & dosage , Animals , Brain/metabolism , Cerebral Hemorrhage/metabolism , Male , Swine , Swine, Miniature
18.
Front Cell Neurosci ; 13: 429, 2019.
Article En | MEDLINE | ID: mdl-31607868

Ischemic stroke is one of the most leading diseases causing death/long-term disability worldwide. Activating endogenous neural stem/progenitors cells (NSPCs), lining in the subventricular zone (SVZ) and dentate gyrus, facilitates injured brain tissue recovery in both short and long-term experimental settings. While, only a few proliferated NSPCs migrate toward the lesions to enhance endogenous repair after ischemia. Here, the results indicated that the functional recovery was evidently improved and the infarct volume was significantly reduced with ascorbic acid (AA) treatment in a dose-dependent manner from 125 to 500 mg/Kg, and the suitable therapeutic concentration was 250 mg/Kg. The possible mechanism might be due to activating sodium-vitamin C cotransporter 2 (SVCT2), which was down-regulated in SVZ after ischemia. Furthermore, immunostaining images depicted the number of migrated NSPCs from SVZ were significantly increased with 250 mg/Kg AA treatment or SVCT2 overexpression under the physiological and pathological condition in vivo. Besides, the data also represented that 250 mg/Kg AA or SVCT2 overexpression facilitated NSPCs migration via promoting F-actin assembling in the manner of up-regulating CDC42 expression using oxygen-glucose deprivation in vitro. Collectively, the present study indicates that SVCT2 promotes NSPCs migration through CDC42 activation to facilitate F-actin assembling, which enlarges the therapeutic scope of AA and the role of SVCT2 in NSPCs migration after brain injury.

19.
Transl Res ; 211: 139-146, 2019 09.
Article En | MEDLINE | ID: mdl-31103467

The minimally invasive surgery plus fibrinolysis has been identified as a promising treatment for spontaneous intracerebral hemorrhage (ICH). However, the fibrinolytic efficacy is not satisfactory. Neutrophil extracellular traps (NETs) have been demonstrated to impair fibrinolysis in sepsis and acute ischemic stroke. Therefore, we decided to explore the presence and potential effect of NETs in ICH fibrinolysis. Intracerebral hemorrhage was induced by autologous arterial blood injection into the basal ganglia in rats. First, at 0.5 hour, 1 hour, and 1.5 hours after blood injection, the brains were collected for NETs detection by immune-staining. Second, ICH rats were given intrahematoma fibrinolysis: rats were randomized to receive the equal amount of saline, DNAse 1, tissue-plasminogen activator (tPA), and tPA + DNAse 1 at 1 hour after hematoma placement. On day 3, animals were sacrificed for terminal deoxynucleotidyl transferase-mediated dUTP Nick-end labeling staining following MRI and behavioral tests. Third, on day 3 after ICH, the hematoma within brain were collected for ex vivo fibrinolysis assay to further evaluate the effect of NETs in ICH fibrinolysis. Co-staining of DAPI, H3, and MPO confirmed the presence of NETs in ICH. Disintegration of NETs using DNAse 1 enhanced tPA-induced hematoma fibrinolysis, relieved brain swelling, reduced cell death, and improved the functional outcome in ICH rats. Therefore, we concluded that NETs impaired the efficacy of tPA for ICH fibrinolysis in rats. Targeting NETs may be a new alternative to improve the fibrinolytic therapy following ICH.


Cerebral Hemorrhage/therapy , Extracellular Traps , Tissue Plasminogen Activator , Animals , Fibrinolytic Agents/pharmacology , Random Allocation , Rats
20.
Sci Rep ; 8(1): 12647, 2018 08 23.
Article En | MEDLINE | ID: mdl-30140021

Mesolimbic dopamine (DA) system lesion plays a key role in the pathophysiology of depression, and our previous study demonstrated that reduced microtubule (MT) stability aggravated nigrostriatal pathway impairment after intracerebral hemorrhage (ICH). This study aimed to further investigate the occurrence regularity of depression-like behavior after ICH and determine whether maintaining MT stabilization could protect DA neurons in ventral tegmental area (VTA) and alleviate depression-like behavior after ICH. An intrastriatal injection of 20 µl of autologous blood or MT depolymerization reagent nocodazole (Noco) was used to mimic the pathology of ICH model in mice. The concentration of DA, number of DA neurons and acetylated α-tubulin (a marker for stable MT) in VTA were checked, and depression-related behavior tests were performed after ICH. A MT-stabilizing agent, epothilone B (EpoB), was administered to explore the effects of MT stabilization on DA neurons and depression-like behavior after ICH. The results showed that obvious depression-like behavior occurred at 7, 14, and 28 days (P < 0.01) after ICH. These time-points were related to significant decreases in the concentration of DA (P < 0.01) and number of DA neurons (P < 0.01) in VTA. Moreover, The decrease of acetylated α-tubulin expression after ICH and Noco injection contributed to DA neurons' impairment in VTA, and Noco injecton also aggravate ICH-induced depression-like behaviors and DA neurons' injury. Furthermore, EpoB treatment significantly ameliorated ICH and Noco-induced depression-like behaviors (P < 0.05) and increased the concentration of DA (P < 0.05) and number of DA neurons (P < 0.05) in VTA by increasing the level of acetylated α-tubulin. The results indicate that EpoB can protect DA neurons by enhancing MT stability, and alleviate post-ICH depressive behaviors. This MT-targeted therapeutic strategy shows promise as a bench-to-bedside translational method for treating depression after ICH.


Depression/metabolism , Dopaminergic Neurons/metabolism , Epothilones/therapeutic use , Microtubules/metabolism , Animals , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Depression/drug therapy , Dopaminergic Neurons/drug effects , Male , Mice , Mice, Inbred C57BL , Microtubules/drug effects , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
...