Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
NPJ Vaccines ; 9(1): 74, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582771

Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.

2.
Comput Struct Biotechnol J ; 19: 801-811, 2021.
Article En | MEDLINE | ID: mdl-33598096

Fast and accurate calculations of the electrostatic features of highly charged biomolecules such as DNA, RNA, and highly charged proteins are crucial and challenging tasks. Traditional implicit solvent methods calculate the electrostatic features quickly, but these methods are not able to balance the high net biomolecular charges effectively. Explicit solvent methods add unbalanced ions to neutralize the highly charged biomolecules in molecular dynamic simulations, which require more expensive computing resources. Here we report developing a novel method, Hybridizing Ions Treatment (HIT), which hybridizes the implicit solvent method with an explicit method to realistically calculate the electrostatic potential for highly charged biomolecules. HIT utilizes the ionic distribution from an explicit method to predict the bound ions. The bound ions are then added in the implicit solvent method to perform the electrostatic potential calculations. In this study, two training sets were developed to optimize parameters for HIT. The performance on the testing set demonstrates that HIT significantly improves the electrostatic calculations. Results on molecular motors myosin and kinesin reveal some mechanisms and explain some previous experimental findings. HIT can be widely used to study highly charged biomolecules, including DNA, RNA, molecular motors, and other highly charged biomolecules. The HIT package is available at http://compbio.utep.edu/static/downloads/download_hit.zip.

3.
Viral Immunol ; 34(1): 41-48, 2021.
Article En | MEDLINE | ID: mdl-33074779

Nucleocytoplasmic large DNA viruses (NCLDVs) are a group of large viruses that infect a wide range of hosts, from animals to protists. These viruses are grouped together in NCLDV based on genomic sequence analyses. They share a set of essential genes for virion morphogenesis and replication. Most NCLDVs generally have large physical sizes while their morphologies vary in different families, such as icosahedral, brick, or oval shape, raising the question of the possible regulatory factor on their morphogenesis. The capsids of icosahedral NCLDVs are assembled from small building blocks, named capsomers, which are the trimeric form of the major capsid proteins. Note that the capsids of immature poxvirus are spherical even though they are assembled from capsomers that share high structural conservation with those icosahedral NCLDVs. The recently published high resolution structure of NCLDVs, Paramecium bursaria Chlorella virus 1 and African swine fever virus, described the intensive network of minor capsid proteins that are located underneath the capsomers. Among these minor proteins is the elongated tape measure protein (TmP) that spans from one icosahedral fivefold vertex to another. In this study, we focused on the critical roles that TmP plays in the assembly of icosahedral NCLDV capsids, answering a question raised in a previously proposed spiral mechanism. Interestingly, basic local alignment search on the TmPs showed no significant hits in poxviruses, which might be the factor that differentiates poxviruses and icosahedral NCLDVs in their morphogenesis.


Capsid Proteins/metabolism , Capsid/chemistry , Capsid/metabolism , DNA Viruses/chemistry , DNA Viruses/metabolism , Virus Assembly , African Swine Fever Virus/chemistry , African Swine Fever Virus/metabolism , Animals , Chlorella/virology , Swine
4.
Front Microbiol ; 11: 2047, 2020.
Article En | MEDLINE | ID: mdl-33013751

Viruses modulate the function(s) of environmentally relevant microbial populations, yet considerations of the metabolic capabilities of individual virus particles themselves are rare. We used shotgun proteomics to quantitatively identify 43 virus-encoded proteins packaged within purified Aureococcus anophagefferens Virus (AaV) particles, normalizing data to the per-virion level using a 9.5-Å-resolution molecular reconstruction of the 1900-Å (AaV) particle that we generated with cryogenic electron microscopy. This packaged proteome was used to determine similarities and differences between members of different giant virus families. We noted that proteins involved in sugar degradation and binding (e.g., carbohydrate lyases) were unique to AaV among characterized giant viruses. To determine the extent to which this virally encoded metabolic capability was ecologically relevant, we examined the TARA Oceans dataset and identified genes and transcripts of viral origin. Our analyses demonstrated that putative giant virus carbohydrate lyases represented up to 17% of the marine pool for this function. In total, our observations suggest that the AaV particle has potential prepackaged metabolic capabilities and that these may be found in other giant viruses that are widespread and abundant in global oceans.

5.
PLoS One ; 15(4): e0221180, 2020.
Article En | MEDLINE | ID: mdl-32320392

At the molecular level, the circadian clock is regulated by a time delayed transcriptional-translational feedback loop in which the core proteins interact with each other rhythmically to drive daily biological rhythms. The C-terminal domain of a key clock protein PER2 (PER2c) plays a critically important role in the loop, not only for its interaction with the binding partner CRY proteins but also for the CRY/PER complex's translocation from the cytosol to the nucleus. Previous circular dichroism (CD) spectroscopic studies have shown that mouse PER2c (mPER2c) is less structured in solution by itself but folded into stable secondary structures upon interaction with mouse CRYs. To understand the stability and folding of human PER2c (hPER2c), we expressed and purified hPER2c. Three oligomerization forms of recombinant hPER2c were identified and thoroughly characterized through a combination of biochemical and biophysical techniques. Different to mPER2c, both thermal unfolding DLS and CD analyses suggested that all forms of hPER2c have very stable secondary structures in solution by themselves with melting temperatures higher than the physiological body temperature, indicating that hPER2c does not require CRY to fold. Furthermore, we examined the effects of EDTA, salt concentration, and a reducing agent on hPER2c folding and oligomerization. The ability of hPER2c forming oligomers reflects the potential role of hPER2c in the assembly of circadian rhythm core protein complexes.


Period Circadian Proteins/chemistry , Amino Acid Sequence , Circular Dichroism , Dynamic Light Scattering , Humans , Models, Molecular , Protein Domains , Protein Folding , Protein Stability , Protein Structure, Secondary , Temperature
6.
Trends Biochem Sci ; 45(4): 276-278, 2020 04.
Article En | MEDLINE | ID: mdl-32169172

African swine fever virus (ASFV) is the causative pathogen of the recent African swine fever epidemic, with devastating impacts on economy. A recent study by Wang et al. reveals the multilayer structural details of ASFV at near-atomic resolution, which provides interesting insights about giant virus assembly and paves the way for vaccine development.


African Swine Fever Virus , African Swine Fever , Animals , Swine , Viral Proteins , Virus Assembly
7.
J Theor Comput Chem ; 19(3)2020 May.
Article En | MEDLINE | ID: mdl-34211240

One quarter of the world's population are infected by Mycobacterium tuberculosis (Mtb), which is a leading death-causing bacterial pathogen. Recent evidence has demonstrated that two virulence factors, ESAT-6 and CFP-10, play crucial roles in Mtb's cytosolic translocation. Many efforts have been made to study the ESAT-6 and CFP-10 proteins. Some studies have shown that ESAT-6 has an essential role in rupturing phagosome. However, the mechanisms of how ESAT-6 interacts with the membrane have not yet been fully understood. Recent studies indicate that the ESAT-6 disassociates with CFP-10 upon their interaction with phagosome membrane, forming a membrane-spanning pore. Based on these observations, as well as the available structure of ESAT-6, ESAT-6 is hypothesized to form an oligomer for membrane insertion as well as rupturing. Such an ESAT-6 oligomer may play a significant role in the tuberculosis infection. Therefore, deeper understanding of the oligomerization of ESAT-6 will establish new directions for tuberculosis treatment. However, the structure of the oligomer of ESAT-6 is not known. Here, we proposed a comprehensive approach to model the complex structures of ESAT-6 oligomer inside a membrane. Several computational tools, including MD simulation, symmetrical docking, MM/PBSA, are used to obtain and characterize such a complex structure. Results from our studies lead to a well-supported hypothesis of the ESAT-6 oligomerization as well as the identification of essential residues in stabilizing the ESAT-6 oligomer which provide useful insights for future drug design targeting tuberculosis. The approach in this research can also be used to model and study other cross-membrane complex structures.

8.
Adv Virus Res ; 108: 275-313, 2020.
Article En | MEDLINE | ID: mdl-33837719

Nucleocytoviricota viruses (NCVs) belong to a newly established phylum originally grouped as Nucleocytoplasmic large DNA viruses. NCVs are unique because of their large and complicated genomes that contain cellular genes with homologs from all kingdoms of life, raising intensive debates on their evolutional origins. Many NCVs pack their genomes inside massive icosahedral capsids assembled from thousands of proteins. Studying the assembly mechanism of such capsids has been challenging until breakthroughs from structural studies. Subsequently, several models of the capsid assembly were proposed, which provided some interesting insights on this elaborate process. In this review, we discuss three of the most recent assembly models as well as supporting experimental observations. Furthermore, we propose a new model that combines research developments from multiple sources. Investigation of the assembly process of these vast NCV capsids will facilitate future deciphering of the molecular mechanisms driving the formation of similar supramolecular complexes.


Capsid/chemistry , Capsid/physiology , DNA Viruses/physiology , Genome, Viral/physiology , Models, Molecular , Virus Assembly , Books , Capsid Proteins/metabolism , DNA Viruses/classification , DNA Viruses/genetics
9.
Front Mol Biosci ; 7: 627087, 2020.
Article En | MEDLINE | ID: mdl-33505991

Studying biomolecular interactions is a crucial but challenging task. Due to their large scales, many biomolecular interactions are difficult to be simulated via all atom models. An effective approach to investigate the biomolecular interactions is highly demanded in many areas. Here we introduce a Structure Manipulation (StructureMan) program to operate the structures when studying the large-scale biomolecular interactions. This novel StructureMan tool provides comprehensive operations which can be utilized to study the interactions in various large biological systems. Combining with electrostatic calculation programs such as DelPhi and DelPhiForce, StructureMan was implemented to reveal the detailed electrostatic features in two large biological examples, the viral capsid and molecular motor-microtubule complexes. Applications on these two examples revealed interesting binding mechanisms in the viral capsid and molecular motor. Such applications demonstrated that the StructureMan can be widely used when studying the biomolecular interactions in large scale biological problems. This novel tool provides an alternative approach to efficiently study the biomolecular interactions, especially for large scale biology systems. The StructureMan tool is available at our website: http://compbio.utep.edu/static/downloads/script-for-munipulation2.zip.

10.
Int J Mol Sci ; 20(8)2019 Apr 16.
Article En | MEDLINE | ID: mdl-30995716

In the last three decades, many giant DNA viruses have been discovered. Giant viruses present a unique and essential research frontier for studies of self-assembly and regulation of supramolecular assemblies. The question on how these giant DNA viruses assemble thousands of proteins so accurately to form their protein shells, the capsids, remains largely unanswered. Revealing the mechanisms of giant virus assembly will help to discover the mysteries of many self-assembly biology problems. Paramecium bursaria Chlorella virus-1 (PBCV-1) is one of the most intensively studied giant viruses. Here, we implemented a multi-scale approach to investigate the interactions among PBCV-1 capsid building units called capsomers. Three binding modes with different strengths are found between capsomers around the relatively flat area of the virion surface at the icosahedral 2-fold axis. Furthermore, a capsomer structure manipulation package is developed to simulate the capsid assembly process. Using these tools, binding forces among capsomers were investigated and binding funnels were observed that were consistent with the final assembled capsid. In addition, total binding free energies of each binding mode were calculated. The results helped to explain previous experimental observations. Results and tools generated in this work established an initial computational approach to answer current unresolved questions regarding giant virus assembly mechanisms. Results will pave the way for studying more complicated process in other biomolecular structures.


Capsid/physiology , Phycodnaviridae/physiology , Virus Assembly , Capsid/chemistry , Capsid Proteins/chemistry , Giant Viruses/chemistry , Giant Viruses/physiology , Models, Molecular , Phycodnaviridae/chemistry , Static Electricity , Thermodynamics
11.
Environ Microbiol ; 21(6): 1942-1956, 2019 06.
Article En | MEDLINE | ID: mdl-30251319

Cylindrospermopsis (Raphidiopsis) raciborskii is an invasive, filamentous, nitrogen-fixing cyanobacterium that forms frequent blooms in freshwater habitats. While viruses play key roles in regulating the abundance, production and diversity of their hosts in aquatic ecosystems, the role(s) of viruses in the ecology of C. raciborskii is almost unexplored. Progress in this field has been hindered by the absence of a characterized virus-host system in C. raciborskii. To bridge this gap, we sequenced the genome of CrV-01T, a previously isolated cyanosiphovirus, and its host, C. raciborskii strain Cr2010. Analyses suggest that CrV-01T represents a distinct clade of siphoviruses infecting, and perhaps lysogenizing, filamentous cyanobacteria. Its genome contains unique features that include an intact CRISPR array and a 12 kb inverted duplication. Evidence suggests CrV-01T recently gained the ability to infect Cr2010 and recently lost the ability to form lysogens. The cyanobacterial host contains a CRISPR-Cas system with CRISPR spacers matching protospacers within the inverted duplication of the CrV-01T genome. Examination of metagenomes demonstrates that viruses with high genetic identity to CrV-01T, but lacking the inverted duplication, are present in C. raciborskii blooms in Australia. The unique genomic features of the CrV/Cr2010 system offers opportunities to investigate in more detail virus-host interactions in an ecologically important bloom-forming cyanobacterium.


Cyanobacteria/virology , Host Specificity , Viruses/isolation & purification , Australia , Clustered Regularly Interspaced Short Palindromic Repeats , Cyanobacteria/physiology , Ecosystem , Fresh Water/microbiology , Fresh Water/virology , Genome, Viral , Genomics , Nitrogen , Virus Physiological Phenomena , Viruses/genetics
12.
Chemistry ; 21(51): 18534-8, 2015 Dec 14.
Article En | MEDLINE | ID: mdl-26459298

A dinuclear gold(I) pyrrolidinedithiocarbamato complex (1) with a bidentate carbene ligand has been constructed and shows potent in vitro cytotoxic activities towards cisplatin-resistant ovarian cancer cells A2780cis. Its rigid scaffold enables a zinc(II)-based metal-organic framework (Zn-MOF) to be used as a carrier in facilitating the uptake and release of 1 in solutions. Instead of using a conventional dialysis approach for the drug-release testing, in this study, a set of transwell assay-based experiments have been designed and employed to examine the cytotoxic and antimigratory activities of 1@Zn-MOF towards A2780cis.


Cisplatin/chemistry , Gold Compounds/chemistry , Gold Compounds/toxicity , Gold/chemistry , Ovarian Neoplasms/chemistry , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Thiocarbamates/chemistry , Zinc/chemistry , Cell Line , Female , Humans , Ligands , Molecular Structure
...