RESUMEN
Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.
RESUMEN
Herein, we aimed to investigate the functions of ADAMTS6 in colon cancer and its potential mechanism. Based on the data acquired from TCGA database, we revealed that ADAMTS6 was highly expressed in colon cancer tissues, and high expression of ADAMTS6 predicted worse prognosis in patients with colon cancer. Moreover, qRT-PCR demonstrated that the levels of ADAMTS6 were higher in colon cancer cell lines (NCI-H508, Caco-2, CW-2 and HCT 116) than that in normal control cell line CCD-18Co. Functional experiments displayed that depletion of ADAMTS6 repressed NCI-H508 cell growth, invasion and migration whilst overexpression of ADAMTS6 facilitated Caco-2 cell growth, invasion and migration. Moreover, ADAMTS6 silencing enhanced the protein expression of E-cadherin and reduced the levels of N-cadherin, Vimentin and Snail in NCI-H508 cells, whereas ADAMTS6 overexpression showed the counter effects in Caco-2 cells. The protein levels of p-AKT and p-p65 were decreased by depletion of ADAMTS6 in NCI-H508 cells, while their levels were enhanced by overexpression of ADAMTS6 in Caco-2 cells. These consequences indicated that the accelerating effect of ADAMTS6 on colon cancer cell growth, migration and invasion might be achieved by modulating EMT and AKT/NF-κB signaling pathway, offering important foundations for colon cancer treatment.