Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
ACS Nano ; 18(19): 12401-12411, 2024 May 14.
Article En | MEDLINE | ID: mdl-38701333

Accurate identification of single nucleotide variants (SNVs) in key driver genes holds a significant value for disease diagnosis and treatment. Fluorescent probes exhibit tremendous potential in specific, high-resolution, and rapid detection of SNVs. However, additional steps are required in most post-PCR assays to convert double-stranded DNA (dsDNA) products into single-stranded DNA (ssDNA), enabling them to possess hybridization activity to trigger subsequent reactions. This process not only prolongs the complexity of the experiment but also introduces the risk of losing target information. In this study, we proposed two strategies for enriching active double-stranded DNA, involving PCR based on obstructive groups and cleavable units. Building upon this, we explored the impact of modified units on the strand displacement reaction (SDR) and assessed their discriminatory efficacy for mutations. The results showed that detection of low variant allele frequencies (VAF) as low as 0.1% can be achieved. The proposed strategy allowed orthogonal identification of 45 clinical colorectal cancer tissue samples with 100% specificity, and the results were generally consistent with sequencing results. Compared to existing methods for enriching active targets, our approach offers a more diverse set of enrichment strategies, characterized by the advantage of being simple and fast and preserving original information to the maximum extent. The objective of this study is to offer an effective solution for the swift and facile acquisition of active double-stranded DNA. We anticipate that our work will facilitate the practical applications of SDR based on dsDNA.


DNA , Polymorphism, Single Nucleotide , Polymorphism, Single Nucleotide/genetics , Humans , DNA/genetics , DNA/chemistry , Colorectal Neoplasms/genetics , Polymerase Chain Reaction , Fluorescent Dyes/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/chemistry
2.
Anal Chem ; 93(13): 5621-5628, 2021 04 06.
Article En | MEDLINE | ID: mdl-33764743

Papillary thyroid carcinoma (PTC) is the most common thyroid cancer with high incidence in endocrine tumors, which emphasizes the significance of accurate diagnostics. Still, the commonly used cytological method (fine-needle aspiration (FNA) cytology) and molecular diagnostic methods (such as PCR and sequencing) are limited in terms of diagnostic time, sensitivity, and user-friendliness. In this study, we introduce a novel Zip recombinase polymerase amplification (Z-RPA) strategy to efficiently detect rare mutant alleles in PTC fine-needle aspiration samples, which is sensitive, fast, and simple to manipulate. Using Zip nucleic acid (ZNA) probes to clamp the mutation region, the phi 29 polymerase could selectively displace mismatched ZNA probes and start amplification, while leaving complementary ZNA probes untouched and blocking amplification according to genotype. We demonstrated the good sensitivity and specificity of this strategy with optimized conditions and design, which enabled detection of BRAF V600E mutation in a total 4 ng of genomic DNA within 40 min (≈1 copy). Robust behavior in clinical specimen analysis was also demonstrated. The Z-RPA strategy provides a pragmatic approach to rapidly, sensitively, and easily detect BRAF V600E mutation in clinical fine-needle aspiration samples, which is a promising method for early cancer diagnosis and treatment guideline.


Proto-Oncogene Proteins B-raf , Thyroid Neoplasms , Biopsy, Fine-Needle , DNA Mutational Analysis , Humans , Mutation , Proto-Oncogene Proteins B-raf/genetics , Recombinases/genetics , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics
...