Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Article En | MEDLINE | ID: mdl-38815737

OBJECTIVE: Kashin-Beck disease (KBD) is an endemic, degenerative, and cartilage-damaging disease for which low selenium and T-2 toxins are considered environmental pathogenic factors. This study aimed to investigate the molecular mechanisms of autophagy in cartilage damage caused by T-2 toxin and the protective effect of chondroitin sulfate A nano-elemental selenium (CSA-SeNP) on the cartilage. METHODS: KBD chondrocytes and C28/I2 human chondrocyte cell lines were used. T-2 toxin, AKT inhibitor, and CSA-SeNP treatment experiments were conducted separately, with a treatment time of 24 h. Autophagy was monitored using MDC staining, and mRFP-GFP-LC3 adenovirus, respectively. RT-qPCR and western blotting were used to detect the expression of the relevant genes and proteins. RESULTS: The suppression of autophagy observed in KBD chondrocytes was replicated by applying 10 ng/mL T-2 toxin to C28/I2 chondrocytes for 24 h. The AKT/TSCR/Rheb/mTOR signaling pathway was activated by T-2 toxin, which inhibits autophagy. The supplementation with CSA-SeNP alleviated the inhibition of autophagy by T-2 toxin through the AKT/TSCR/Rheb/mTOR signaling pathway. CONCLUSIONS: Loss of autophagy regulated by the AKT/TSCR/Rheb/mTOR signaling pathway plays an important role in cartilage damage caused by T-2 toxin. CSA-SeNP supplementation attenuated inhibition of autophagy in chondrocytes by T-2 toxin by modulating this signaling pathway. These findings provide promising new targets for the prevention and treatment of cartilage disease.

2.
Ecotoxicol Environ Saf ; 279: 116503, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38810288

Kashin-Beck disease (KBD) is an endemic, environmentally associated cartilage disease. Previous studies have shown that the environmental suspected pathogenic factors of KBD, T-2 toxin and low selenium, are involved in the regulation of inflammation, oxidative stress and autophagy in some tissues and organs. In cartilage diseases, the level of cellular autophagy determines the fate of the chondrocytes. However, whether autophagy is involved in KBD cartilage lesions, and the role of low selenium and T-2 toxins in KBD cartilage injury and autophagy are still unclear. This work took the classical AMPK/mTOR/ULK1 autophagy regulatory pathway as the entry point to clarify the relationship between the environmental suspected pathogenic factors and chondrocyte autophagy. Transmission electron microscopy was used to observe the autophagy of chondrocytes in KBD patients. qRT-PCR and western blot were used to analyze the expression of AMPK/mTOR/ULK1 pathway and autophagy markers. The rat model of KBD was established by low selenium and T-2 toxin, the autophagy in rat cartilage was detected after 4- and 12-week interventions. Chondrocyte autophagy was found in KBD, and the AMPK/mTOR/ULK1 pathway was down-regulated. In the rat model, the pathway showed an up-regulated trend when low selenium and T-2 toxin, were treated for a short time or low concentration, and autophagy level increased. However, when low selenium and T-2 toxin were treated for a long time or at high concentrations, the pathway showed a down-regulated trend, and the autophagy level was reduced and even defective. In conclusion, in the process of KBD cartilage lesion, chondrocyte autophagy level may increase in the early stage, and decrease in the late stage with the progression of lesion. Low selenium and T-2 toxins may affect autophagy by AMPK/mTOR/ULK1 pathway.


AMP-Activated Protein Kinases , Autophagy-Related Protein-1 Homolog , Autophagy , Chondrocytes , Kashin-Beck Disease , Selenium , T-2 Toxin , TOR Serine-Threonine Kinases , T-2 Toxin/toxicity , T-2 Toxin/analogs & derivatives , Autophagy/drug effects , Kashin-Beck Disease/pathology , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy-Related Protein-1 Homolog/metabolism , Male , Chondrocytes/drug effects , Chondrocytes/pathology , Humans , AMP-Activated Protein Kinases/metabolism , Rats , Female , Middle Aged , Rats, Sprague-Dawley , Signal Transduction/drug effects , Adult , Intracellular Signaling Peptides and Proteins
3.
Int Immunopharmacol ; 130: 111574, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38367461

Selenium (Se) is a trace element necessary for humans to maintain normal physiological activities, and Se deficiency may lead to splenic injury, while Se supplementation can alleviate splenic injury. However, the mechanism is unclear. In this study, we constructed a Se deficiency animal model by feeding Sprague-Dawley (SD) rats with low Se feed. Meanwhile, we observed the repairing effect of Se supplementation on splenic injury with two doses of novel nano-selenium (Nano-Se) supplement by gavage. We measured the Se content in the spleens of the rats by atomic fluorescence spectroscopy (AFS) method and combined the results of hematoxylin-eosin (HE) and Masson staining to observe the splenic injury, comprehensively evaluating the construction of the animal model of low selenium-induced splenic injury. We measured the mRNA and protein expression levels of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa-B (NF-κB), and interleukin-6 (IL-6) in the spleen by Real-time quantitative polymerase chain reaction (qPCR), western blot (WB), and immunohistochemistry (IHC). We found that the Se deficiency group exhibited lower Se content, splenic fibrosis, and high expression of p38 MAPK, NF-κB, and IL-6 compared to the normal group. The Se supplement groups exhibited higher Se content, attenuated splenic injury, and down-regulated expression of p38 MAPK, NF-κB, and IL-6 relative to the Se deficiency group. This study suggests that Se deficiency leads to splenic injury in rats, and Se supplementation may attenuate splenic injury by inhibiting the expression of p38 MAPK, NF-κB and IL-6.


NF-kappa B , Selenium , Humans , Rats , Animals , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Spleen/metabolism , Selenium/therapeutic use , Selenium/pharmacology , Interleukin-6 , Rats, Sprague-Dawley , Dietary Supplements
4.
Environ Geochem Health ; 46(2): 61, 2024 Jan 28.
Article En | MEDLINE | ID: mdl-38281271

The objective of this study was to investigate the effects of anthracene (Ant) with 3 rings, benzo[a]anthracene (BaA) with 4 rings and benzo[b]fluoranthene (BbF) with 5 rings in fine particulate matter (PM2.5) at different exposure times (4 h and 24 h) and low exposure levels (0 pg/mL, 0.1 pg/mL, 1 pg/mL, 100 pg/mL and 10,000 pg/mL) on RAW264.7 cells. The changes of interleukin-6 (IL-6) and oxidative stress levels in RAW264.7 cells were investigated by methyl-thiazolyl-tetrazolium (MTT) and enzyme-linked immunosorbent assay (ELISA). Pearson correlation analysis was used to analyze the correlation between variables. Ant, BaA and BbF induced the secretion of IL-6 and the occurrence of oxidative stress in RAW264.7 cells. The inflammatory effect and oxidative damage were exacerbated with prolonged exposure time, increasing exposure concentration and increasing number of PAH rings. At the same time, IL-6 was found to have a certain correlation with the levels of ROS, MDA and SOD. Exposure to atmospheric PAHs at low concentrations can also produce toxic effects on cells, IL-6 and oxidative stress work together in cell damage. The study is expected to provide a theoretical and experimental basis for air pollution control and human health promotion.


Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/toxicity , Anthracenes/toxicity , Interleukin-6 , Macrophages/chemistry , Oxidative Stress , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Animals , Mice , RAW 264.7 Cells
5.
Ecotoxicol Environ Saf ; 269: 115748, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38029582

As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.


Kidney Diseases , Selenium , T-2 Toxin , Animals , Rats , Estrogen Receptor alpha/metabolism , Fibrosis , Kidney Diseases/chemically induced , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Selenium/pharmacology , Selenium/toxicity , Signal Transduction , T-2 Toxin/toxicity
6.
Biol Trace Elem Res ; 201(10): 4850-4860, 2023 Oct.
Article En | MEDLINE | ID: mdl-36645617

The single and combined effects of short-term selenium (Se) deficiency and T-2 toxin-induced kidney pathological injury through the MMPs/TIMPs system were investigated. Forty-eight rats were randomly divided into control, 10 ng/g T-2 toxin, 100 ng/g T-2 toxin, Se-deficient, 10 ng/g T-2 toxin and Se deficiency combined, and 100 ng/g T-2 toxin and Se deficiency combined groups for a 4-week intervention. The kidney Se concentration was measured to evaluate the construction of animal models of Se deficiency. Kidney tissues were analyzed by hematoxylin-eosin staining, Masson staining, and transmission electron microscope to observe the pathological changes, the severity of kidney fibrosis, and ultrastructural changes, respectively. Meanwhile, quantitative polymerase chain reaction and immunohistochemical staining were used to analyze the gene and protein expression levels of matrix metallopeptidase 2/3 (MMP2/3) and tissue inhibitor of metalloproteinase 1 (TIMP1). The results showed that short-term Se deficiency and T-2 toxin exposure can cause kidney injury through tubular degeneration and even lead to kidney fibrosis. And the combination of T-2 toxin and Se deficiency had a synergistic effect on the kidney. A dose-response effect of the T-2 toxin was also observed. At the gene and protein levels, the expression of MMP2/3 in the intervention group increased, while the expression of TIMP1 decreased compared with the control group. In conclusion, short-term Se deficiency and T-2 toxin exposure might lead to injury and even the development of fibrosis in the kidneys, and combined intervention can increase the severity with a dose-dependent trend. MMP2/3 and TIMP1 likely play a significant role in the development of kidney fibrosis.


Kidney Diseases , Selenium , T-2 Toxin , Rats , Animals , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , T-2 Toxin/toxicity , Selenium/metabolism , Matrix Metalloproteinase 2/genetics , Kidney/metabolism , Kidney Diseases/metabolism , Fibrosis
...