Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Nat Chem ; 16(3): 408-416, 2024 Mar.
Article En | MEDLINE | ID: mdl-38062248

The umpolung functionalization of imines bears vast synthetic potential, but polarity inversion is less efficient compared with the carbonyl counterparts. Strong nucleophiles are often required to react with the N-electrophiles without catalytic and stereochemical control. Here we show an effective strategy to realize umpolung of imines promoted by organocatalytic aromatization. The attachment of strongly electron-withdrawing groups to imines could enhance the umpolung reactivity by both electronegativity and aromatic character, enabling the direct amination of (hetero)arenes with good efficiencies and stereoselectivities. Additionally, the application of chiral Brønsted acid catalyst furnishes (hetero)aryl C-N atropisomers or enantioenriched aliphatic amines via dearomative amination from N-electrophilic aromatic precursors. Control experiments and density functional theory calculations suggest an ionic mechanism for the umpolung reaction of imines. This disconnection expands the options to forge C-N bonds stereoselectively on (hetero)arenes, which represents an important synthetic pursuit, especially in medicinal chemistry.

2.
J Am Chem Soc ; 145(39): 21152-21158, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37732875

Chiral cyclobutene units are commonly found in natural products and biologically active molecules. Transition-metal-catalysis has been extensively used in asymmetric synthesis of such structures, while organocatalytic approaches remain elusive. In this study, bicyclo[1.1.0]butanes are involved in enantioselective transformation for the first time to offer a highly efficient route toward cyclobutenes with good regio- and enantiocontrol. The utilization of N-triflyl phosphoramide as a chiral Brønsted acid promoter enables this isomerization process to proceed under mild conditions with low catalyst loading as well as good functional group compatibility. The resulting chiral cyclobutenes could serve as platform molecules for downstream manipulations with excellent reservation of stereochemical integrity, demonstrating the synthetic practicality of the developed method. Control experiments have also been performed to verify the formation of a key carbocation intermediate at the benzylic position.

3.
Angew Chem Int Ed Engl ; 62(40): e202309272, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37587093

QUINAPs have emerged as a pivotal class of axially chiral compounds with remarkable features in the stereoinduction of diverse enantioselective transformations. However, the confined substrate range and extravagant price still pose challenges, limiting their broader utilization. Herein, we describe the first atroposelective oxidation of an N atom using a chiral ketone catalyst, allowing the kinetic resolution of QUINAPOs to give both the unreacted substrates and their corresponding N-oxides with excellent enantioselectivity. Importantly, the enantioenriched products can be readily converted into the QUINAP targets without any loss of stereochemical integrity. Mechanistic investigations indicate that a dioxirane, generated through the oxidation of the ketone with oxone, acts as the active catalytic species. Furthermore, we have successfully extended this catalytic system to the kinetic resolution of QUINOLs and the dynamic kinetic transformation of pyridine analogues of QUINAPO possessing a labile stereogenic axis. The practicality of the developed protocol is further demonstrated by the successful application of QUINAPO N-oxide as a Lewis base catalyst in a series of enantioselective transformations.

4.
Angew Chem Int Ed Engl ; 62(25): e202303128, 2023 Jun 19.
Article En | MEDLINE | ID: mdl-37186009

Atroposelective cross-coupling is one of the most appealing routes to construct axially chiral binaphthyl molecules due to the modular and succinct nature. Although transition-metal-catalyzed cross-couplings offer reliable synthetic means, alternative reaction modes that could be applied to broader substrate range without their pre-functionalization is highly desirable. Herein we show that the application of chiral Brønsted acid catalyst as organocatalyst could accomplish cross-coupling of 1-azonaphthalenes and 2-naphthols with high efficiency, exclusive C4-selectivity as well as excellent enantioselectivity and functional group compatibility. The identification of acylimidazolinone auxiliary for azo activating group, effective remote catalyst control and arene resonance effect synergistically play key roles in the development of this method. The utility is further demonstrated by transformations of the products into other binaphthyl compounds with perfectly retained axial chirality.


Acids , Naphthols , Naphthols/chemistry , Catalysis , Stereoisomerism
5.
Nat Chem ; 15(5): 647-657, 2023 May.
Article En | MEDLINE | ID: mdl-37055574

ß-Amino acids are structural motifs widely found in therapeutic natural products, novel biomimetic polymers and peptidomimetics. As a convergent method, the synthesis of stereoenriched ß-amino amides through the asymmetric Mannich reaction requires specialized amide substrates or a metal catalyst for enolate formation. By a redesign of the Ugi reaction, a conceptually different solution to prepare chiral ß-amino amides was established using ambiphilic ynamides as two-carbon synthons. The modulation of ynamides or oxygen nucleophiles concisely furnished three classes of ß-amino amides with generally good efficiency as well as excellent chemo- and stereo-control. The utility is verified in the preparation of over 100 desired products that bear one or two contiguous carbon stereocentres, including those that directly incorporate drug molecules. This advance also provides a synthetic shortcut to other valuable structures. The amino amides could be elaborated into ß-amino acids, anti-vicinal diamines, γ-amino alcohols and ß-lactams or undergo transamidation with amino acids and amine-containing pharmaceuticals.

6.
Chem Sci ; 14(9): 2330-2335, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36873834

Azonaphthalenes have been verified as a class of effective arylation reagents in a variety of asymmetric transformations. Here a highly efficient approach to construct triaryl-substituted all-carbon quaternary stereocenters through chiral phosphoric acid-catalyzed enantioselective arylation of 3-aryl-2-oxindoles with azonaphthalenes is disclosed. This chemistry is scalable and displays excellent functional group tolerance, furnishing a series of 3,3-disubstituted 2-oxindole derivatives in good yields with excellent enantiocontrol. Preliminary mechanistic data suggest that the initially formed direct addition intermediate undergoes intramolecular annulation under acidic reaction conditions.

7.
Angew Chem Int Ed Engl ; 62(1): e202213914, 2023 01 02.
Article En | MEDLINE | ID: mdl-36346195

Anthrones and analogues are structural cores shared by diverse pharmacologically active natural and synthetic compounds. The sp2 -rich nature imposes inherent obstruction to introduce stereogenic element onto the tricyclic aromatic backbone. In our pursuit to expand the chemical space of axial chirality, a novel type of axially chiral anthrone-derived skeleton was discovered. This work establishes oxime ether as suitable functionality to furnish axial chirality on symmetric anthrone skeletons through stereoselective condensation of the carbonyl entity with long-range chirality control. The enantioenriched anthrones could be elaborated into dibenzo-fused seven-membered N-heterocycles containing well-defined stereogenic center via Beckmann rearrangement with axial-to-point chirality conversion.


Anthracenes , Stereoisomerism , Catalysis
8.
Angew Chem Int Ed Engl ; 61(45): e202211211, 2022 11 07.
Article En | MEDLINE | ID: mdl-36111538

The application of Suzuki-Miyaura coupling reaction to forge the atropisomeric biaryls has seen remarkable progress but exploration of this chemistry to directly forge chiral C(aryl)-C(alkene) axis is underdeveloped. The replacement of arene substrates by alkenes intensifies the challenges in terms of reactivity, configurational atropostability of product and selectivity control. By meticulous ligand design and fine-tuning of reaction parameters, we identified a highly active 3,3'-triphenylsilyl-substituted phosphite ligand to realize arene-alkene Suzuki-Miyaura coupling of hindered aryl halides and vinyl boronates under very mild conditions. The axially chiral acyclic aryl-alkenes were generated in commendable efficiency, enantioselectivity and E/Z selectivity.


Alkenes , Palladium , Ligands , Catalysis
9.
Org Lett ; 24(38): 7031-7036, 2022 09 30.
Article En | MEDLINE | ID: mdl-36129413

This report describes a highly efficient ß-selective C-glycosylation of bicyclic galactals with 2-oxindoles through a palladium-catalyzed decarboxylative pathway. A variety of substrates representing both glycosyl donors and acceptors could be transformed in greater than 90% yields under mild reaction conditions. The decarboxylation intermediate of galactal could serve as an efficient base to deprotonate the enol tautomer of 2-oxindole and enhance its nucleophilicity. The ß-selective nucleophilic addition at the anomeric center originates from the steric hindrance imposed by the palladium and bulky ligand.


Oxindoles , Palladium , Catalysis , Galactose/analogs & derivatives , Galactose/chemistry , Glycosylation , Ligands , Oxindoles/chemistry , Palladium/chemistry
10.
Acc Chem Res ; 55(20): 2920-2937, 2022 10 18.
Article En | MEDLINE | ID: mdl-36177502

The growing importance of axially chiral architectures in different scientific domains has unveiled shortcomings in terms of efficient synthetic access and skeletal variety. This account describes our strategies in answering these challenges within the organocatalytic context where the emergence of bifunctional catalysts such as chiral phosphoric acids (CPAs) has proven invaluable in controlling the sense of axial chirality. The wide occurrence of bi(hetero)aryl skeletons in privileged structures constitutes a strong motivation to devise more effective arylation methods. Our design revolves around modulating the intrinsic nucleophilicity of aromatic amines and alcohols. The first approach involves the design of an electron-withdrawing activating group which could associate with the catalyst for reactivity enhancement and selectivity control. The resonance of arenes offers the unique mechanistic possibility to select between activating sites. C2-Azo- and nitroso-substituted naphthalenes undergo atroposelective ortho C- or N-arylation with (hetero)aromatic nucleophiles. For monocyclic benzenes, programmable charge localization leads to regioselective activation by catalytic control alone or aided by substrate design. For instance, selective addition to nitroso nitrogen enables successive annulation initiated by the amine to yield axially chiral N-arylbenzimidazoles. In a biomimetic manner, a finely tuned catalyst could direct a para-selective nucleophilic approach in the atroposelective arylation of azobenzenes. The second strategy employs electrophilic arene precursors for arylation which occurs via rearomatization with central-to-axial chirality transfer. This enabled the arylation of (imino)quinones with indoles to access phenylindole atropisomers. By adapting this chemistry with an additional oxidation event to liberate the carbonyl functionalities, aryl-o-naphthoquinone and aryl-p-quinone atropisomers were attained. Along with the development of new arylation strategies, deriving new axially chiral structures has been another consistent theme of our research program. The atroposelective functionalization of alkynes provides broad entry to atropisomeric alkenes. The monofunctionalization of alkynes through the interception of an electrophilic vinylidene-quinone-methide (VQM) intermediate with 2-naphthols yielded the new EBINOL scaffolds. By designing an internal directing group, the atroposelective dihalogenation of alkynes was realized using abundant alkali halides despite their weak nucleophilicities and poor solubilities. The atroposelective N-alkylation of alkenes was pursued to prepare multifunctionalized alkene atropisomers that could be converted into 2-arylpyrroles with chirality transfer. The synthesis of B-aryl-1,2-azaborines containing a C-B chiral axis was accomplished where the CPA catalyst effects the desymmetrization and defines the configuration of the distal C-B bond. Inspired by the axially chiral scaffold of allenes, we leveraged the developed arene activation strategy to achieve para-addition and dearomatization of judiciously designed azobenzenes, which led to structurally novel cyclohexadienylidene-based hydrazones. To complement these structures, axially chiral cyclohexadienyl oxime ethers were also attained through CPA-catalyzed condensation between hydroxylamines and spiro[4.5]trienones.


Naphthalenes , Naphthols , Alkalies , Alkenes , Alkynes , Amines/chemistry , Benzoquinones , Ethers , Hydrazones , Hydroxylamines , Indoles , Naphthalenes/chemistry , Naphthols/chemistry , Nitrogen , Oximes , Phosphoric Acids/chemistry , Quinones/chemistry , Skeleton , Stereoisomerism
11.
Chem Commun (Camb) ; 58(27): 4392-4395, 2022 Mar 31.
Article En | MEDLINE | ID: mdl-35297913

N-Heterobiaryls are common skeletons found in biological molecules, pharmaceuticals and ligands. Herein, we document an efficient and redox-neutral photocatalytic system to obtain functionalized N-heterobiaryls under mild conditions. Substrates bearing variegated functional groups are compatible with the developed photocatalytic conditions. This method is translatable to gram-scale synthesis, with a photocatalyst loading as low as 0.1 mol% and minimal variation of the yield. The starting materials are commercially available, demonstrating the practicality and accessibility of this methodology. Interestingly, phenols can serve both as coupling partners and proton donors. Arenes without a phenolic hydroxyl group also underwent efficient coupling with HFIP as a solvent.


Phenols , Catalysis , Ligands , Oxidation-Reduction
12.
Chem Commun (Camb) ; 58(10): 1613-1616, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-35019918

N-Aryl phenothiazines and phenoxazines are of significant importance in various disciplines throughout academia and industry. The conventional synthetic strategy for the construction of these structures centers on the transition-metal-catalyzed cross-coupling of aryl halides with phenothiazines or phenoxazines. Here we present an organocatalytic approach to access N-naphthyl phenothiazine and phenoxazine scaffolds through a straightforward C-H amination of arenes as enabled by an azo group. This reaction features operational simplicity, adequate substrate generality and excellent functional group compatibility. Notably, the efficiency of the catalyst could be perfectly preserved after 5 catalytic cycles.

13.
Angew Chem Int Ed Engl ; 60(47): 24888-24893, 2021 11 15.
Article En | MEDLINE | ID: mdl-34553823

Described herein is an imidazole ring formation strategy for the synthesis of axially chiral N-arylbenzimidazoles by means of chiral phosphoric acid catalysis. Two sets of conditions were developed to transform two classes of 2-naphthylamine derivatives into structurally diverse N-arylbenzimidazole atropisomers with excellent chemo- and regioselectivity as well as high levels of enantiocontrol. It is worth reflecting on the unique roles played by the nitroso group in this domino reaction. It functions as a linchpin by first offering an electrophilic site (N) for the initial C-N bond formation while the resulting amine performs the nucleophilic addition to form the second C-N bond. Additionally, it could facilitate the final oxidative aromatization as an oxidant. The atropisomeric products could be conveniently elaborated to a series of axially chiral derivatives, enabling the exploitation of N-arylbenzimidazoles for their potential utilities in asymmetric catalysis.

14.
Nat Chem ; 13(10): 982-991, 2021 10.
Article En | MEDLINE | ID: mdl-34373595

Over the past three decades, organocatalysis has emerged as a powerful catalysis platform and has gradually been incorporated into the routine synthetic toolbox to obtain chiral molecules. However, its application in the site- and enantioselective functionalization of inactive aryl C-H bonds remains in its infancy. Here, we present an organocatalyst-controlled para-selective arene C-H functionalization strategy that addresses this issue, which remains an enduring challenge in arene functionalization chemistry. By emulating enzyme catalysis, the chiral phosphoric acid catalyst offers an ideal chiral environment for stereoinduction, and the projecting substituents give control of chemo- and site-selectivity. Various types of nucleophile are compatible with this method, affording more than 100 para-selective adducts with stereodefined carbon centres or axes in viable molecular contexts. This protocol is expected to provide a general strategy for para-selective functionalization of arene C-H bonds in a controlled manner.

15.
Chem Commun (Camb) ; 57(68): 8512-8515, 2021 Sep 04.
Article En | MEDLINE | ID: mdl-34351332

N-Phenylphenothiazine as an inexpensive, highly reductive and oxygen tolerant organophotocatalyst has exhibited potential in various challenging photochemical transformations. Here we report a general and straightforward method to access structurally diverse N-phenylphenothiazine derivatives by means of a novel electrochemical tool. The introduction of a 2-naphthylamine moiety with an extended π-system and an amine group led to the variation of spectral characterization. Photochemical verification experiments demonstrated that the formed N-arylation products with good efficacy and chemo/site-control displayed competitive catalytic activity in challenging transformations.

16.
J Am Chem Soc ; 143(33): 12924-12929, 2021 Aug 25.
Article En | MEDLINE | ID: mdl-34384026

The previously elusive catalytic enantioselective construction of axially chiral B-aryl-1,2-azaborines with a C-B stereogenic axis has been realized through a chiral phosphoric acid-catalyzed desymmetrization strategy reported herein. The electrophilic aromatic substitution reaction of 3,5-disubsituted phenols with diazodicarboxamides could afford these axially chiral structures in good efficiency with excellent enantiocontrol. The efficient long-range stereochemical control is achieved by multiple well-defined H-bonding interactions between chiral phosphoric acid and both substrates. Meanwhile, the reaction duration could be markedly shortened with weakly acidic N-H in 1,2-azaborine acting as H-bond donor. The scalability of the reaction and facile cleavage of the N-N bond in the product further demonstrated the practicality of this method.

17.
Molecules ; 26(11)2021 May 27.
Article En | MEDLINE | ID: mdl-34072116

NOBIN and BINAM derivatives harboring biaryl frameworks are recognized as a class of important atropisomers with versatile applications. Here, we present an efficient synthetic route to access such compounds through copper-catalyzed domino arylation of N-arylhydroxylamines or N-arylhydrazines with diaryliodonium salts and [3,3]-sigmatropic rearrangement. This reaction features mild conditions, good substrate compatibility, and excellent efficiency. The practicality of this protocol was further extended by the synthesis of biaryl amino alcohols.

18.
Nat Commun ; 12(1): 2384, 2021 04 22.
Article En | MEDLINE | ID: mdl-33888700

As an important platform molecule, atropisomeric QUINOL plays a crucial role in the development of chiral ligands and catalysts in asymmetric catalysis. However, efficient approaches towards QUINOL remain scarce, and the resulting high production costs greatly impede the related academic research as well as downstream industrial applications. Here we report a direct oxidative cross-coupling reaction between isoquinolines and 2-naphthols, providing a straightforward and scalable route to acquire the privileged QUINOL scaffolds in a metal-free manner. Moreover, a NHC-catalyzed kinetic resolution of QUINOL N-oxides with high selectivity factor is established to access two types of promising axially chiral Lewis base catalysts in optically pure forms. The utility of this methodology is further illustrated by facile transformations of the products into QUINAP, an iconic ligand in asymmetric catalysis.

19.
J Am Chem Soc ; 143(17): 6382-6387, 2021 05 05.
Article En | MEDLINE | ID: mdl-33904724

Pnictogen-bonding catalysis based on σ-hole interactions has recently attracted the attention of synthetic chemists. As a proof-of-concept for asymmetric pnictogen-bonding catalysis, we report herein an enantioselective transfer hydrogenation of benzoxazines catalyzed by a novel chiral antimony cation/anion pair. The chiral pnictogen catalyst library could be rapidly accessed from triarylstibine with readily available mandelic acid analogues, and the catalyst displays remarkable efficiency and enantiocontrol potency even at 0.05 mol % loading. Moreover, the properties of the catalyst and the mechanistic insights have been investigated by nonlinear effect studies, 1H NMR, LC-MS, and control experiments.

20.
Chem Rev ; 121(8): 4805-4902, 2021 04 28.
Article En | MEDLINE | ID: mdl-33775097

Atropisomerism is a stereochemical behavior portrayed by three-dimensional molecules that bear rotationally restricted σ bond. Akin to the well-represented point-chiral molecules, atropisomerically chiral compounds are finding increasing utilities in many disciplines where molecular asymmetry is influential. This provides steady demand on atroposelective synthesis, where numerous synthetic pursuits have been rewarded with conceptually novel and streamlined methods while expanding the structural diversity of atropisomers. This review summarizes key achievements in stereoselective preparation of biaryl, heterobiaryl, and nonbiaryl atropisomers documented between 2015 and 2020. Emphasis is placed on the synthetic strategies for each structural class, while examples are cited to illustrate the potential applications of the accessed atropochiral targets.

...