Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Adv Exp Med Biol ; 1199: 127-153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37460730

RESUMEN

The brain-computer interface (BCI), also known as a brain-machine interface (BMI), has attracted extensive attention in biomedical applications. More importantly, BCI technologies have substantially revolutionized early predictions, diagnostic techniques, and rehabilitation strategies addressing acute diseases because of BCI's innovations and clinical translations. Therefore, in this chapter, a comprehensive description of the basic concepts of BCI will be exhibited, and various visualization techniques employed in BCI's medical applications will be discussed.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/métodos
3.
Eur J Radiol ; 166: 111003, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37506477

RESUMEN

PURPOSE: To assess the continuous-time random-walk (CTRW) model's diagnostic value in breast lesions and to explore the associations between the CTRW parameters and breast cancer pathologic factors. METHOD: This retrospective study included 85 patients (70 malignant and 18 benign lesions) who underwent 3.0T MRI examinations. Diffusion-weighted images (DWI) were acquired with 16b-values to fit the CTRW model. Three parameters (Dm, α, and ß) derived from CTRW and apparent diffusion coefficient (ADC) from DWI were compared among the benign/malignant lesions, molecular prognostic factors, and molecular subtypes by Mann-Whitney U test. Spearman correlation was used to evaluate the associations between the parameters and prognostic factors. The diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC) based on the diffusion parameters. RESULTS: All parameters, ADC, Dm, α, and ß were significantly lower in the malignant than benign lesions (P < 0.05). The combination of all the CTRW parameters (Dm, α, and ß) provided the highest AUC (0.833) and the best sensitivity (94.3%) in differentiating malignant status. And the positive status of estrogen receptor (ER) and progesterone receptor (PR) showed significantly lower ß compared with the negative counterparts (P < 0.05). The high Ki-67 expression produced significantly lower Dm and ADC values (P < 0.05). Additionally, combining multiple CTRW parameters improved the performance of diagnosing molecular subtypes of breast cancer. Moreover, Spearman correlations analysis showed that ß produced significant correlations with ER, PR and Ki-67 expression (P < 0.05). CONCLUSIONS: The CTRW parameters could be used as non-invasive quantitative imaging markers to evaluate breast lesions.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Pronóstico , Estudios Retrospectivos , Antígeno Ki-67 , Sensibilidad y Especificidad , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética/métodos , Receptores de Estrógenos , Mama/patología
4.
5.
Front Neurosci ; 15: 693623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483822

RESUMEN

As a world intangible cultural heritage, acupuncture is considered an essential modality of complementary and alternative therapy to Western medicine. Despite acupuncture's long history and public acceptance, how the cortical network is modulated by acupuncture remains largely unclear. Moreover, as the basic acupuncture unit for regulating the central nervous system, how the cortical network is modulated during acupuncture at the Hegu acupoint is mostly unclear. Here, multi-channel functional near-infrared spectroscopy (fNIRS) data were recorded from twenty healthy subjects for acupuncture manipulation, pre- and post-manipulation tactile controls, and pre- and post-acupuncture rest controls. Results showed that: (1) acupuncture manipulation caused significantly increased acupuncture behavioral deqi performance compared with tactile controls. (2) The bilateral prefrontal cortex (PFC) and motor cortex were significantly inhibited during acupuncture manipulation than controls, which was evidenced by the decreased power of oxygenated hemoglobin (HbO) concentration. (3) The bilateral PFC's hemodynamic responses showed a positive correlation trend with acupuncture behavioral performance. (4) The network connections with bilateral PFC as nodes showed significantly increased functional connectivity during acupuncture manipulation compared with controls. (5) Meanwhile, the network's efficiency was improved by acupuncture manipulation, evidenced by the increased global efficiency and decreased shortest path length. Taken together, these results reveal that a cooperative PFC-Motor functional network could be modulated by acupuncture manipulation at the Hegu acupoint. This study provides neuroimaging evidence that explains acupuncture's neuromodulation effects on the cortical network.

6.
J Neural Eng ; 18(5)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34507311

RESUMEN

Objective. Decoding imagined speech from brain signals could provide a more natural, user-friendly way for developing the next generation of the brain-computer interface (BCI). With the advantages of non-invasive, portable, relatively high spatial resolution and insensitivity to motion artifacts, the functional near-infrared spectroscopy (fNIRS) shows great potential for developing the non-invasive speech BCI. However, there is a lack of fNIRS evidence in uncovering the neural mechanism of imagined speech. Our goal is to investigate the specific brain regions and the corresponding cortico-cortical functional connectivity features during imagined speech with fNIRS.Approach. fNIRS signals were recorded from 13 subjects' bilateral motor and prefrontal cortex during overtly and covertly repeating words. Cortical activation was determined through the mean oxygen-hemoglobin concentration changes, and functional connectivity was calculated by Pearson's correlation coefficient.Main results. (a) The bilateral dorsal motor cortex was significantly activated during the covert speech, whereas the bilateral ventral motor cortex was significantly activated during the overt speech. (b) As a subregion of the motor cortex, sensorimotor cortex (SMC) showed a dominant dorsal response to covert speech condition, whereas a dominant ventral response to overt speech condition. (c) Broca's area was deactivated during the covert speech but activated during the overt speech. (d) Compared to overt speech, dorsal SMC(dSMC)-related functional connections were enhanced during the covert speech.Significance. We provide fNIRS evidence for the involvement of dSMC in speech imagery. dSMC is the speech imagery network's key hub and is probably involved in the sensorimotor information processing during the covert speech. This study could inspire the BCI community to focus on the potential contribution of dSMC during speech imagery.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Motora , Corteza Sensoriomotora , Hemodinámica , Humanos , Habla
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...