Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 365
1.
J Cell Mol Med ; 28(9): e18296, 2024 May.
Article En | MEDLINE | ID: mdl-38702954

We investigated subarachnoid haemorrhage (SAH) macrophage subpopulations and identified relevant key genes for improving diagnostic and therapeutic strategies. SAH rat models were established, and brain tissue samples underwent single-cell transcriptome sequencing and bulk RNA-seq. Using single-cell data, distinct macrophage subpopulations, including a unique SAH subset, were identified. The hdWGCNA method revealed 160 key macrophage-related genes. Univariate analysis and lasso regression selected 10 genes for constructing a diagnostic model. Machine learning algorithms facilitated model development. Cellular infiltration was assessed using the MCPcounter algorithm, and a heatmap integrated cell abundance and gene expression. A 3 × 3 convolutional neural network created an additional diagnostic model, while molecular docking identified potential drugs. The diagnostic model based on the 10 selected genes achieved excellent performance, with an AUC of 1 in both training and validation datasets. The heatmap, combining cell abundance and gene expression, provided insights into SAH cellular composition. The convolutional neural network model exhibited a sensitivity and specificity of 1 in both datasets. Additionally, CD14, GPNMB, SPP1 and PRDX5 were specifically expressed in SAH-associated macrophages, highlighting its potential as a therapeutic target. Network pharmacology analysis identified some targeting drugs for SAH treatment. Our study characterised SAH macrophage subpopulations and identified key associated genes. We developed a robust diagnostic model and recognised CD14, GPNMB, SPP1 and PRDX5 as potential therapeutic targets. Further experiments and clinical investigations are needed to validate these findings and explore the clinical implications of targets in SAH treatment.


Biomarkers , Deep Learning , Machine Learning , Macrophages , Single-Cell Analysis , Subarachnoid Hemorrhage , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/metabolism , Animals , Macrophages/metabolism , Single-Cell Analysis/methods , Rats , Biomarkers/metabolism , Male , Gene Expression Profiling , Transcriptome , Rats, Sprague-Dawley , Disease Models, Animal , Neural Networks, Computer , Molecular Docking Simulation
3.
Small ; : e2401429, 2024 May 29.
Article En | MEDLINE | ID: mdl-38808805

Plastics serve as an essential foundation in contemporary society. Nevertheless, meeting the rigorous performance demands in advanced applications and addressing their end-of-life disposal are two critical challenges that persist. Here, an innovative and facile method is introduced for the design and scalable production of polycarbonate, a key engineering plastic, simultaneously achieving high performance and closed-loop chemical recyclability. The bisphenol framework of polycarbonate is strategically adjusted from the low-bond-dissociation-energy bisphenol A to high-bond-dissociation-energy 4,4'-dihydroxydiphenyl, in combination with the incorporation of polysiloxane segments. As expected, the enhanced bond dissociation energy endows the polycarbonate with an extremely high glow-wire flammability index surpassing 1025 °C, a 0.8 mm UL-94 V-0 rating, a high LOI value of 39.2%, and more than 50% reduction of heat and smoke release. Furthermore, the π-π stacking interactions within biphenyl structures resulted in a significant enhancement of mechanical strength by as more as 37.7%, and also played a positive role in achieving a lower dielectric constant. Significantly, the copolymer exhibited outstanding closed-loop chemical recyclability, allowing for facile depolymerization into bisphenol monomers and the repolymerized copolymer retains its high heat and fire resistance. This work provides a novel insight in the design of high-performance and closed-loop chemical recyclable polymeric materials.

4.
Public Health ; 232: 68-73, 2024 May 14.
Article En | MEDLINE | ID: mdl-38749150

OBJECTIVES: There is growing evidence that differences exist between rural and urban residents in terms of health, access to care and the quality of health care received, especially in low- and middle-income countries (LMICs). To improve health equity and the performance of health systems, a diagnosis-related group (DRG) payment system has been introduced in many LMICs to reduce financial risk and improve the quality of health care. The aim of this study was to examine the impact of DRG payments on the health care received by rural residents in China, and to help policymakers identify and design implementation strategies for DRG payment systems for rural residents in LMICs. STUDY DESIGN: Health impact assessment. METHODS: This study compared the impact of DRG payments on the healthcare received by rural residents in China between the pre- and post-reform periods by applying a difference-in-difference (DID) methodology. The study population included individuals with three common conditions; namely, cerebral infarction, transient ischaemic attack (TIA), and vertebrobasilar insufficiency (VBI). Data on patient medical insurance type were assessed, and those who did not have rural insurance were excluded. RESULTS: This study included 13,088 patients. In total, 33.63% were from Guangdong (n = 4401), 38.21% were from Shandong (n = 5002), and 28.16% were from Guangxi (n = 3685). The DID results showed that the implementation of DRGs was positively associated with hospitalization expense (ß4 = 0.265, P = 0.000), treatment expense (ß4 = 0.343, P = 0.002), drug expense (ß4 = 0.607, P = 0.000), the spending of medical insurance funds (ß4 = 0.711, P = 0.000) and out-of-pocket costs (ß4 = 0.164, P = 0.000). CONCLUSIONS: The findings of this study suggest that the implementation of DRG payments increases health care costs and the financial burden on health systems and rural patients in LMICs. This is contrary to the original intention of implementing the DRG payment system.

6.
Brain Behav ; 14(5): e3504, 2024 May.
Article En | MEDLINE | ID: mdl-38698583

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Electroacupuncture , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Electroacupuncture/methods , Male , Rats , Reperfusion Injury/physiopathology , Reperfusion Injury/therapy , Reperfusion Injury/diagnostic imaging , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Brain Ischemia/diagnostic imaging , Disease Models, Animal , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/physiopathology
7.
Article En | MEDLINE | ID: mdl-38805136

The ecological damage caused by the accelerated urbanization process has continued to endanger the sustainable development of the Loess Plateau region, and the conflict between economic development and environmental protection has become increasingly critical. It is meaningful to explore the coupling coordination degree (CCD) between urbanization (UZ) and the ecological environment (EE) in the Loess Plateau and the mechanism of its influence to eliminate the locking of the rapid urbanization development paths in ecologically fragile regions, using panel data of 39 cities in the Loess Plateau region from 2010 to 2020. The empirical results have found that the level of UZ shows a fluctuating upward trend while the level of EE fluctuates and decreases. The synthesis CCD is at a barely coordinated level with an apparent upward trend, and the spatial characteristics are represented by "central depression," with low levels in the neighboring cities and high levels in the provincial capital cities. Regarding the driving factors, residents' living, industrial structure, and openness have a favorable impact on CCD, while enhancing the government's regulatory capacity has a negative blocking effect. These findings provide novel insights into the Loess Plateau's regional sustainable development.

8.
Front Sports Act Living ; 6: 1393988, 2024.
Article En | MEDLINE | ID: mdl-38756186

Background: Long-term skill learning can lead to structure and function changes in the brain. Different sports can trigger neuroplasticity in distinct brain regions. Volleyball, as one of the most popular team sports, heavily relies on individual abilities such as perception and prediction for high-level athletes to excel. However, the specific brain mechanisms that contribute to the superior performance of volleyball athletes compared to non-athletes remain unclear. Method: We conducted a study involving the recruitment of ten female volleyball athletes and ten regular female college students, forming the athlete and novice groups, respectively. Comprehensive behavioral assessments, including Functional Movement Screen and audio-visual reaction time tests, were administered to both groups. Additionally, resting-state magnetic resonance imaging (MRI) data were acquired for both groups. Subsequently, we conducted in-depth analyses, focusing on the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the brain for both the athlete and novice groups. Results: No significant differences were observed in the behavioral data between the two groups. However, the athlete group exhibited noteworthy enhancements in both the ALFF and ReHo within the visual cortex compared to the novice group. Moreover, the functional connectivity between the visual cortex and key brain regions, including the left primary sensory cortex, left supplementary motor cortex, right insula, left superior temporal gyrus, and left inferior parietal lobule, was notably stronger in the athlete group than in the novice group. Conclusion: This study has unveiled the remarkable impact of volleyball athletes on various brain functions related to vision, movement, and cognition. It indicates that volleyball, as a team-based competitive activity, fosters the advancement of visual, cognitive, and motor skills. These findings lend additional support to the early cultivation of sports talents and the comprehensive development of adolescents. Furthermore, they offer fresh perspectives on preventing and treating movement-related disorders. Trial registration: Registration number: ChiCTR2400079602. Date of Registration: January 8, 2024.

9.
ACS Nano ; 18(21): 13635-13651, 2024 May 28.
Article En | MEDLINE | ID: mdl-38753978

As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.


Adipose Tissue , Lipoproteins, HDL , Animals , Mice , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Adipose Tissue/metabolism , Recombinant Proteins , Resveratrol/pharmacology , Resveratrol/chemistry , Obesity/drug therapy , Obesity/metabolism , Hydrogels/chemistry , Mice, Inbred C57BL , Humans , Male , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Drug Delivery Systems , Scavenger Receptors, Class B/metabolism
10.
Int J Biol Macromol ; 268(Pt 1): 131503, 2024 May.
Article En | MEDLINE | ID: mdl-38663697

Herbivorous insects utilize intricate olfactory mechanisms to locate food plants. The chemical communication of insect-plant in primitive lineage offers insights into evolutionary milestones of divergent olfactory modalities. Here, we focus on a system endemic to the Qinghai-Tibetan Plateau to unravel the chemical and molecular basis of food preference in ancestral Lepidoptera. We conducted volatile profiling, neural electrophysiology, and chemotaxis assays with a panel of host plant organs to identify attractants for Himalaya ghost moth Thitarodes xiaojinensis larvae, the primitive host of medicinal Ophiocordyceps sinensis fungus. Using a DREAM approach based on odorant induced transcriptomes and subsequent deorphanization tests, we elucidated the odorant receptors responsible for coding bioactive volatiles. Contrary to allocation signals in most plant-feeding insects, T. xiaojinensis larvae utilize tricosane from the bulbil as the main attractant for locating native host plant. We deorphanized a TxiaOR17b, an indispensable odorant receptor resulting from tandem duplication of OR17, for transducing olfactory signals in response to tricosane. The discovery of this ligand-receptor pair suggests a survival strategy based on food location via olfaction in ancestral Lepidoptera, which synchronizes both plant asexual reproduction and peak hatch periods of insect larvae.


Larva , Moths , Receptors, Odorant , Animals , Moths/physiology , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Smell/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Phylogeny , Chemotaxis , Fatty Alcohols/pharmacology , Fatty Alcohols/chemistry
11.
bioRxiv ; 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38659795

Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, cellular factors involved in dynactin assembly remain unexplored. Here we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components including an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with dynactin either directly or indirectly via the Arp1 mini-filament and its pointed-end sub-complex. Loss of VezA causes a defect in dynactin integrity, most likely by affecting the connection between the Arp1 mini-filament and its pointed-end sub-complex. Using various dynactin mutants, we further revealed that assembly of the dynactin complex must be highly coordinated. Together, these results shed important new light on dynactin assembly in vivo.

12.
Clin Proteomics ; 21(1): 29, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594611

BACKGROUND: Adamantinomatous craniopharyngiomas (ACPs) are rare benign epithelial tumours with high recurrence and poor prognosis. Biological differences between recurrent and primary ACPs that may be associated with disease recurrence and treatment have yet to be evaluated at the proteomic level. In this study, we aimed to determine the proteomic profiles of paired recurrent and primary ACP, gain biological insight into ACP recurrence, and identify potential targets for ACP treatment. METHOD: Patients with ACP (n = 15) or Rathke's cleft cyst (RCC; n = 7) who underwent surgery at Sanbo Brain Hospital, Capital Medical University, Beijing, China and received pathological confirmation of ACP or RCC were enrolled in this study. We conducted a proteomic analysis to investigate the characteristics of primary ACP, paired recurrent ACP, and RCC. Western blotting was used to validate our proteomic results and assess the expression of key tumour-associated proteins in recurrent and primary ACPs. Flow cytometry was performed to evaluate the exhaustion of tumour-infiltrating lymphocytes (TILs) in primary and recurrent ACP tissue samples. Immunohistochemical staining for CD3 and PD-L1 was conducted to determine differences in T-cell infiltration and the expression of immunosuppressive molecules between paired primary and recurrent ACP samples. RESULTS: The bioinformatics analysis showed that proteins differentially expressed between recurrent and primary ACPs were significantly associated with extracellular matrix organisation and interleukin signalling. Cathepsin K, which was upregulated in recurrent ACP compared with that in primary ACP, may play a role in ACP recurrence. High infiltration of T cells and exhaustion of TILs were revealed by the flow cytometry analysis of ACP. CONCLUSIONS: This study provides a preliminary description of the proteomic differences between primary ACP, recurrent ACP, and RCC. Our findings serve as a resource for craniopharyngioma researchers and may ultimately expand existing knowledge of recurrent ACP and benefit clinical practice.

15.
Article En | MEDLINE | ID: mdl-38503484

BACKGROUND: This study aimed to investigate the efficacy of circuits-based paired associative stimulation (PAS) in adults with amnestic mild cognitive impairment (aMCI). METHODS: We conducted a parallel-group, randomised, controlled clinical trial. Initially, a cohort of healthy subjects was recruited to establish the cortical-hippocampal circuits by tracking white matter fibre connections using diffusion tensor imaging. Subsequently, patients diagnosed with aMCI, matched for age and education, were randomly allocated in a 1:1 ratio to undergo a 2-week intervention, either circuit-based PAS or sham PAS. Additionally, we explored the relationship between changes in cognitive performance and the functional connectivity (FC) of cortical-hippocampal circuits. RESULTS: FCs between hippocampus and precuneus and between hippocampus and superior frontal gyrus (orbital part) were most closely associated with the Auditory Verbal Learning Test (AVLT)_N5 score in 42 aMCI patients, thus designated as target circuits. The AVLT_N5 score improved from 2.43 (1.43) to 5.29 (1.98) in the circuit-based PAS group, compared with 2.52 (1.44) to 3.86 (2.39) in the sham PAS group (p=0.003; Cohen's d=0.97). A significant decrease was noted in FC between the left hippocampus and left precuneus in the circuit-based PAS group from baseline to postintervention (p=0.013). Using a generalised linear model, significant group×FC interaction effects for the improvements in AVLT_N5 scores were found within the circuit-based PAS group (B=3.4, p=0.017). CONCLUSIONS: Circuit-based PAS effectively enhances long-term delayed recall in adults diagnosed with aMCI, which includes individuals aged 50-80 years. This enhancement is potentially linked to the decreased functional connectivity between the left hippocampus and left precuneus. TRIAL REGISTRATION NUMBER: ChiCTR2100053315; Chinese Clinical Trial Registry.

16.
ACS Appl Mater Interfaces ; 16(12): 14385-14404, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38489475

Bacterial infectious diseases pose a significant global challenge. However, conventional antibacterial agents exhibit limited therapeutic effectiveness due to the emergence of drug resistance, necessitating the exploration of novel antibacterial strategies. Nanozymes have emerged as a highly promising alternative to antibiotics, owing to their particular catalytic activities against pathogens. Herein, we synthesized ultrasmall-sized MnFe2O4 nanozymes with different charges (MnFe2O4-COOH, MnFe2O4-PEG, MnFe2O4-NH2) and assessed their antibacterial capabilities. It was found that MnFe2O4 nanozymes exhibited both antibacterial and antibiofilm properties attributed to their excellent peroxidase-like activities and small sizes, enabling them to penetrate biofilms and interact with bacteria. Moreover, MnFe2O4 nanozymes effectively expedite wound healing within 12 days and facilitate tissue repair and regeneration while concurrently reducing inflammation. MnFe2O4-COOH displayed favorable antibacterial activity against Gram-positive bacteria, with 80% bacterial removal efficiency against MRSA by interacting with phosphatidylglycerol (PG) and cardiolipin (CL) of the membrane. By interacting with negatively charged bacteria surfaces, MnFe2O4-NH2 demonstrated the most significant and broad-spectrum antibacterial activity, with 95 and 85% removal efficiency against methicillin-resistant Staphylococcus aureus (MRSA) and P. aeruginosa, respectively. MnFe2O4-PEG dissipated membrane potential and reduced ATP levels in MRSA and P. aeruginosa, showing relatively broad-spectrum antibacterial activity. To conclude, MnFe2O4 nanozymes offer a promising therapeutic approach for treating wound infections.


Bacterial Infections , Ferric Compounds , Manganese Compounds , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Bacteria
17.
Fitoterapia ; 175: 105884, 2024 Jun.
Article En | MEDLINE | ID: mdl-38460855

There are >350 species of the Ophiobolus genus, which is not yet very well-known and lacks research reports on secondary metabolites. Three new 3,4-benzofuran polyketides 1-3, a new 3,4-benzofuran polyketide racemate 4, two new pairs of polyketide enantiomers (±)-5 and (±)-7, two new acetophenone derivatives 6 and 8, and three novel 1,4-dioxane aromatic polyketides 9-11, were isolated from a fungus Ophiobolus cirsii LZU-1509 derived from an important medicinal and economic crop Anaphalis lactea. The isolation was guided by LC-MS/MS-based GNPS molecular networking analysis. The planar structures and relative configurations were mainly elucidated by NMR and HR-ESI-MS data. Their absolute configurations were determined by using X-ray diffraction analysis and via comparing computational and experimental ECD, NMR, and specific optical rotation data. 9 possesses an unreported 5/6/6/6/5 five-ring framework with a 1,4-dioxane, and 10 and 11 feature unprecedented 6/6/6/5 and 6/6/5/6 four-ring frames containing a 1,4-dioxane. The biosynthetic pathways of 9-11 were proposed. 1-11 were nontoxic in HT-1080 and HepG2 tumor cells at a concentration of 20 µM, whereas 3 and 5 exerted higher antioxidant properties in the hydrogen peroxide-stimulated model in the neuron-like PC12 cells. They could be potential antioxidant agents for neuroprotection.


Antioxidants , Ascomycota , Polyketides , Molecular Structure , Antioxidants/pharmacology , Antioxidants/isolation & purification , Polyketides/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Humans , Ascomycota/chemistry , Cell Line, Tumor , Animals , China
18.
Chemistry ; 30(30): e202400944, 2024 May 28.
Article En | MEDLINE | ID: mdl-38529828

Introducing CeO2 into Pd-based nanocatalysts for electrocatalytic reactions is a good way to solve the intermediate toxicity problem and improve the catalytic performance. Here we reported a simple strategy to synthesize the PdCuAg and CeO2 nanowires hybrid via a one-pot synthesis process under strong nanoconfined effect of specific surfactant as templates. Owing to the structural (ultrathin nanowires, abundant heterojunction/interfaces between metal and metal oxide) and compositional (Pd, Cu, Ag, CeO2) advantages, the hybrid showed significantly enhanced catalytic activity (6.06 A mgPd -1) and stability, accelerated reaction rate, and reduced activation energy toward electrocatalytic ethylene glycol oxidation reaction.

19.
J Med Chem ; 67(7): 5924-5934, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38507820

Real-time detection of cellular senescence remains a clinical challenge. Here, we aimed to develop a positron emission tomography (PET) imaging probe targeting senescence-associated ß-galactosidase (SA-ß-Gal), the most widely used biomarker of cellular senescence, and investigate its performance for real-time in vivo quantitative detection of cellular senescence. A stable PET imaging agent [68Ga]Ga-BGal was obtained with a high labeling yield (90.0 ± 4.3%) and a radiochemical purity (>95%). [68Ga]Ga-BGal displayed high sensitivity and specificity for ß-Gal both in vitro and in vivo. The reaction and uptake of the probe correlated with the ß-Gal concentration and reaction time. In PET imaging, high ß-Gal-expressing CT26.CL25 tumors and doxorubicin-treated HeLa tumors showed high signals from [68Ga]Ga-BGal, while a low signal was observed in CT26.WT and untreated HeLa tumors. In summary, we showcased successful PET imaging of senescence in preclinical models using probe [68Ga]Ga-BGal. This finding holds the potential for translating senescence imaging into clinical applications.


Gallium Radioisotopes , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , HeLa Cells , Doxorubicin , Cell Line, Tumor
20.
Sci Rep ; 14(1): 7014, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38528051

The seismic deterioration effects of anchor cables and slope structural planes are often neglected in the dynamic stability analysis of anchored rocky slopes to the extent that the stability of slopes is overestimated. In this paper, a dynamic calculation method for anchored rocky slopes considering the seismic deterioration effect is established, and a stability evaluation method for anchored rocky slopes based on the Gaussian mixture model is proposed. The seismic deterioration effect on the stability of anchored rocky slopes is quantitatively analyzed with an engineering example, and the relationship between seismic intensity and the failure probability of slopes is clarified. The results show that compared with the calculation method without considering the seismic deterioration effect, the minimum safety factor and post-earthquake safety factor obtained by the proposed method in this paper are smaller. The number of seismic deteriorations of the slope is used as the number of components of the Gaussian mixture model to construct the failure probability model of the slope, which can accurately predict the failure probability of anchored rocky slopes. The research results significantly improve the accuracy of the stability calculation of anchored rocky slopes, which can be used to guide the seismic design and safety assessment of anchored rocky slopes.

...