Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 182: 133-144, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35490639

RESUMEN

Hydrogen sulfide (H2S) improves aluminum (Al) resistance in rice, however, the underlying mechanism remains unclear. In the present study, treatment with 30-µM Al significantly inhibited rice root growth and increased the total Al content, apoplastic and cytoplasm Al concentration in the rice roots. However, pretreatment with NaHS (H2S donor) reversed these negative effects. Pretreatment with NaHS significantly increased energy production under Al toxicity conditions, such as by increasing the content of ATP and nonstructural carbohydrates. In addition, NaHS stimulated the AsA-GSH cycle to decrease the peroxidation damage induced by Al toxicity. Pretreatment with NaHS significantly inhibited ethylene emissions in the rice and then inhibited pectin synthesis and increased the pectin methylation degree to reduce cell wall Al deposition. The phytohormones indole-3-acetic and brassinolide were also involved in the alleviation of Al toxicity by H2S. The transcriptome results further confirmed that H2S alleviates Al toxicity by increasing the pathways relating to material and energy metabolism, redox reactions, cell wall components, and signal transduction. These findings improve our understanding of how H2S affects rice responses to Al toxicity, which will facilitate further studies on crop safety.


Asunto(s)
Sulfuro de Hidrógeno , Oryza , Aluminio/metabolismo , Aluminio/toxicidad , Pared Celular/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Oryza/metabolismo , Pectinas/metabolismo
2.
Ying Yong Sheng Tai Xue Bao ; 29(10): 3398-3406, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30325166

RESUMEN

In agroecosystem, arbuscular mycorrhizal fungi have mutually beneficial symbiosis with roots of many crops. Meanwhile, this special fungal community is also affected by agricultural mana-gements such as fertilization. The objective of this study was to investigate the effects of long-term fertilization managements (no fertilizer, chemical fertilizer, chemical fertilizer combined with straw, chemical fertilizer combined with manure) on arbuscular mycorrhizal fungal community (AM fungal community) in lime concretion black soil, and to identify the indicator species in each fertilization regime. The most dominant arbuscular mycorrhizal fungal phyla in lime concretion black soil were Archaeosporaceae, Diversisporaceae, Gigasporaceae, Claroideoglomeraceae, Glomeraceae and Paraglomeraceae. The genus Paraglomus was strongly and significantly associated with the application of chemical fertilizer and organic fertilizer. Compared with the control, long-term application of chemical fertilizer greatly changed AM fungal community structure and resulted in the decrease of AM fungal diversity, and the addition of wheat straw further decreased the diversity, while the addition of manure could alleviate diversity loss resulted from chemical fertilization. Soil pH and dissolved organic carbon (DOC) were the main factors affecting the changes of AM fungal community. In summary, long-term application of chemical fertilizer combined with different organic materials had different impacts on soil AM fungal community structure and diversity. The combination of chemical fertilizer and manure would be more conducive to the maintenance of AM fungal diversity.


Asunto(s)
Micorrizas , Agricultura , Compuestos de Calcio , Productos Agrícolas , Fertilizantes , Glomeromycota , Estiércol , Óxidos , Raíces de Plantas , Suelo , Microbiología del Suelo , Simbiosis , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA