Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123740

RESUMEN

Avian primordial germ cells (PGCs) are essential in avian transgenic research, germplasm conservation, and disease resistance breeding. However, cultured PGCs are prone to fragmentation and apoptosis, regulated at transcriptional and translational levels, with N6-methyladenosine (m6A) being the most common mRNA modification. Resveratrol (RSV) is known for its antioxidant and anti-apoptotic properties, but its effects on PGCs and the underlying mechanisms are not well understood. This study shows that RSV supplementation in cultured PGCs improves cell morphology, significantly enhances total antioxidant capacity (p < 0.01), reduces malondialdehyde levels (p < 0.05), increases anti-apoptotic BCL2 expression, and decreases Caspase-9 expression (p < 0.05). Additionally, RSV upregulates the expression of m6A reader proteins YTHDF1 and YTHDF3 (p < 0.05). m6A methylation sequencing revealed changes in mRNA m6A levels after RSV treatment, identifying 6245 methylation sites, with 1223 unique to the control group and 798 unique to the RSV group. Combined analysis of m6A peaks and mRNA expression identified 65 mRNAs with significantly altered methylation and expression levels. Sixteen candidate genes were selected, and four were randomly chosen for RT-qPCR validation, showing results consistent with the transcriptome data. Notably, FAM129A and SFRP1 are closely related to apoptosis, indicating potential research value. Overall, our study reveals the protective effects and potential mechanisms of RSV on chicken PGCs, providing new insight into its use as a supplement in reproductive stem cell culture.

2.
Food Res Int ; 191: 114716, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059964

RESUMEN

Dehydration is an effective method for the long-term storage and aroma retention of gonggan (Citrus sinensis Osb. 'Deqing Gonggan'), which is a Chinese variety of citrus, with unique and characteristic floral, fruity, and citrus flavors. However, the aroma profiles of gonggans prepared using oven- and freeze-drying, the most widely-used drying methods, remain unclear. In this study, a total of 911 volatile organic compounds (VOCs) were detected in dried gonggan. These were primarily composed of alcohols (7.69%), aldehydes (7.03%), esters (15.38%), ketones (7.58%), and terpenoids (23.19%). A total of 67 odorants contributed significantly to the overall aroma of dried gonggans, with the major odor qualities being detected as green, citrus, fruity, floral, and sweet. These were mainly attributed to the presence of aldehydes, esters, and terpenoids. Freeze-drying was more effective in maintaining the unique citrus and mandarin-like aromas attributed to compounds such as limonene, citrial, ß-myrcene, ß-pinene, and γ-terpinene. Moreover, (E,E)-2,4-decadienal had the highest relative odor activity value (rOAV) in freeze-dried gonggans, followed by (E)-2-nonenal, furaneol, (E, E)-2, 4-nonadienal, and E-2-undecenal. Oven-drying promoted the accumulation of terpenes such as octatriene, trans-ß-ocimene, cyclohexanone, copaene, and ɑ-irone, imparting a soft aroma of flowers, fruits, and sweet. Increasing the temperature led to an increase in existing VOCs or the generation of new VOCs through phenylpropanoid, terpenoid, and fatty acid metabolism. The findings of this study offer insights into an optimized procedure for producing high-quality dried gonggans. These insights can be valuable for the fruit-drying industry, particularly for enhancing the quality of dried fruits.


Asunto(s)
Liofilización , Odorantes , Terpenos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Terpenos/análisis , Frutas/química , Citrus sinensis/química , Desecación/métodos , Aldehídos/análisis , Cromatografía de Gases y Espectrometría de Masas , Cetonas/análisis , Monoterpenos Bicíclicos/análisis , Ésteres/análisis , Alcadienos/análisis , Ciclohexenos/análisis , Manipulación de Alimentos/métodos , Monoterpenos Acíclicos , Monoterpenos Ciclohexánicos , Alquenos , Sesquiterpenos
3.
J Agric Food Chem ; 72(31): 17633-17648, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39051975

RESUMEN

Dendrobium officinale polysaccharide (DP) was prepared with lactic acid bacterium fermentation to overcome the large molecular weight and complex structure of traditional DP for improving its functional activity and application range in this work. The structure was analyzed, and then the functional activity was evaluated using a mouse model of alcoholic liver damage. The monosaccharide compositions were composed of four monosaccharides: arabinose (0.13%), galactose (0.50%), glucose (24.38%), and mannose (74.98%) with a molecular weight of 2.13 kDa. The connection types of glycosidic bonds in fermented D. officinale (KFDP) were →4)-ß-D-Manp(1→, →4)-ß-Glcp(1→, ß-D-Manp(1→, and ß-D-Glcp(1→. KFDP exhibited an excellent protective effect on alcoholic-induced liver damage at a dose of 80 mg/kg compared with polysaccharide separated and purified from D. officinale without fermentation (KDP), which increased the activity of GSH, GSH-Px, and GR and decreased the content of MDA, AST, T-AOC, and ALT, as well as regulated the level of IL-6, TNF-α, and IL-1ß to maintain the normal functional structure of hepatocytes and retard the apoptosis rate of hepatocytes. The results proved that fermentation degradation is beneficial to improving the biological activity of polysaccharides. The potential mechanism of KFDP in protecting alcoholic liver damage was inhibiting the expression of miRNA-150-5p and targeting to promote the expression of Pik3r1. This study provides an important basis for the development of functional foods.


Asunto(s)
Dendrobium , Fermentación , Hepatopatías Alcohólicas , Hígado , Polisacáridos , Animales , Ratones , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/administración & dosificación , Dendrobium/química , Masculino , Hepatopatías Alcohólicas/prevención & control , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Humanos , Hígado/metabolismo , Hígado/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/administración & dosificación , Lactobacillales/metabolismo , Lactobacillales/genética , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación
4.
Biosensors (Basel) ; 14(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39056598

RESUMEN

Patulin, an emerging mycotoxin with high toxicity, poses great risks to public health. Considering the poor antibody production in patulin immunization, this study focuses on the four-dimensional data-independent acquisition (4D-DIA) quantitative proteomics to reveal the immune response of patulin in rabbits. The rabbit immunization was performed with the complete developed antigens of patulin, followed by the identification of the immune serum. A total of 554 differential proteins, including 292 up-regulated proteins and 262 down-regulated proteins, were screened; the differential proteins were annotated; and functional enrichment analysis was performed. The differential proteins were associated with the pathways of metabolism, gene information processing, environmental information processing, cellular processes, and organismal systems. The functional enrichment analysis indicated that the immunization procedures mostly resulted in the regulation of biochemical metabolic and signal transduction pathways, including the biosynthesis of amino acid (glycine, serine, and threonine), ascorbate, and aldarate metabolism; fatty acid degradation; and antigen processing and presentation. The 14 key proteins with high connectivity included G1U9T1, B6V9S9, G1SCN8, G1TMS5, G1U9U0, A0A0G2JH20, G1SR03, A0A5F9DAT4, G1SSA2, G1SZ14, G1T670, P30947, P29694, and A0A5F9C804, which were obtained by the analysis of protein-protein interaction networks. This study could provide potential directions for protein interaction and antibody production for food hazards in animal immunization.


Asunto(s)
Patulina , Proteómica , Animales , Conejos
5.
Front Pharmacol ; 15: 1380277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628645

RESUMEN

Essential oils are potential alternatives to antibiotics for preventing Candida albicans (C. albicans) infection which is responsible for economic losses in the pigeon industry. Cymbopogon martini essential oil (EO) can inhibit pathogens, particularly fungal pathogens but its potential beneficial effects on C. albicans-infected pigeons remain unclear. Therefore, we investigated the impact of C. martini EO on antioxidant activity, immune response, intestinal barrier function, and intestinal microbiota in C. albicans-infected pigeons. The pigeons were divided into four groups as follows: (1) NC group: C. albicans uninfected/C. martini EO untreated group; (2) PC group: C. albicans infected/C. martini EO untreated group; (3) LPA group: C. albicans infected/1% C. martini EO treated group; and (4) HPA group: C. albicans infected/2% C. martini EO treated group. The pigeons were infected with C. albicans from day of age 35 to 41 and treated with C. martini EO from day of age 42 to 44, with samples collected on day of age 45 for analysis. The results demonstrated that C. martini EO prevented the reduction in the antioxidant enzymes SOD and GSH-Px causes by C. albicans challenge in pigeons. Furthermore, C. martini EO could decrease the relative expression of IL-1ß, TGF-ß, and IL-8 in the ileum, as well as IL-1ß and IL-8 in the crop, while increasing the relative expression of Claudin-1 in the ileum and the crop and Occludin in the ileum in infected pigeons. Although the gut microbiota composition was not significantly affected by C. martini EO, 2% C. martini EO increased the abundance of Alistipes and Pedobacter. In conclusion, the application of 2% C. martini EO not only enhanced the level of antioxidant activity and the expression of genes related to intestinal barrier function but also inhibited inflammatory genes in C. albicans-infected pigeons and increased the abundance of gut bacteria that are resistant to C. albicans.

6.
Plants (Basel) ; 13(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38592811

RESUMEN

AREB/ABF (ABA response element binding) proteins in plants are essential for stress responses, while our understanding of AREB/ABFs from orchid species, important traditional medicinal and ornamental plants, is limited. Here, twelve AREB/ABF genes were identified within three orchids' complete genomes and classified into three groups through phylogenetic analysis, which was further supported with a combined analysis of their conserved motifs and gene structures. The cis-element analysis revealed that hormone response elements as well as light and stress response elements were widely rich in the AREB/ABFs. A prediction analysis of the orchid ABRE/ABF-mediated regulatory network was further constructed through cis-regulatory element (CRE) analysis of their promoter regions. And it revealed that several dominant transcriptional factor (TF) gene families were abundant as potential regulators of these orchid AREB/ABFs. Expression profile analysis using public transcriptomic data suggested that most AREB/ABF genes have distinct tissue-specific expression patterns in orchid plants. Additionally, DcaABI5 as a homolog of ABA INSENSITIVE 5 (ABI5) from Arabidopsis was selected for further analysis. The results showed that transgenic Arabidopsis overexpressing DcaABI5 could rescue the ABA-insensitive phenotype in the mutant abi5. Collectively, these findings will provide valuable information on AREB/ABF genes in orchids.

7.
Food Chem ; 448: 139125, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537547

RESUMEN

In this study, the ultrasonic-microwave pretreatment was defined as a processing technology in the production of tribute citrus powder, and it could increase the flavonoid compounds in the processing fruit powder. A total of 183 upregulated metabolites and 280 downregulated metabolites were obtained by non-targeted metabolomics, and the differential metabolites was mainly involved in the pathways of flavonoid biosynthesis, flavone and flavonol biosynthesis. A total of 8 flavonoid differential metabolites were obtained including 5 upregulated metabolites (6"-O-acetylglycitin, scutellarin, isosakuranin, rutin, and robinin), and 3 downregulated metabolites (astragalin, luteolin, and (-)-catechin gallate) by flavonoids-targeted metabolomics. The 8 flavonoid differential metabolites participated in the flavonoid biosynthesis pathways, flavone and flavonol biosynthesis pathways, and isoflavonoid biosynthesis pathways. The results provide a reference for further understanding the relationship between food processing and food components, and also lay a basis for the development of food targeted-processing technologies.


Asunto(s)
Citrus , Flavonoides , Frutas , Metabolómica , Citrus/metabolismo , Citrus/química , Flavonoides/metabolismo , Flavonoides/química , Frutas/química , Frutas/metabolismo , Polvos/química , Polvos/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Manipulación de Alimentos
8.
Compr Rev Food Sci Food Saf ; 23(1): e13290, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284591

RESUMEN

Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.


Asunto(s)
Manipulación de Alimentos , Conservación de Alimentos , Calidad de los Alimentos , Valor Nutritivo , Inocuidad de los Alimentos
9.
Bioengineered ; 15(1): 2305029, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38258524

RESUMEN

Oats (Avena sativa L.) are one of the worldwide cereal crops. Avenanthramides (AVNs), the unique plant alkaloids of secondary metabolites found in oats, are nutritionally important for humans and animals. Numerous bioactivities of AVNs have been investigated and demonstrated in vivo and in vitro. Despite all these, researchers from all over the world are taking efforts to learn more knowledge about AVNs. In this work, we highlighted the recent updated findings that have increased our understanding of AVNs bioactivity, distribution, and especially the AVNs biosynthesis. Since the limits content of AVNs in oats strictly hinders the demand, understanding the mechanisms underlying AVN biosynthesis is important not only for developing a renewable, sustainable, and environmentally friendly source in both plants and microorganisms but also for designing effective strategies for enhancing their production via induction and metabolic engineering. Future directions for improving AVN production in native producers and heterologous systems for food and feed use are also discussed. This summary will provide a broad view of these specific natural products from oats.


• Avenanthramides are unique nutritional alkaloids in oats• AVN bioactivity, distribution, and the potential AVNs biosynthesis are discussed• AVNs can be produced via induction and metabolic engineering.


Asunto(s)
Avena , Grano Comestible , Animales , Humanos , ortoaminobenzoatos , Amidas , Fenoles
10.
Int J Biol Macromol ; 255: 128217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992932

RESUMEN

The significant threat of foodborne pathogens contamination has continuously promoted the development of efficient antimicrobial food packaging materials. Here, an antimicrobial film was prepared with gallic acid-grafted-chitosan (CS/GA) that obtained by a two-step ultrasound method. The resultant films exhibited good transparency, improved UV barrier performance, and enhanced mechanical strength. Specifically, with the grafting of 1.2 % GA, the UV blocking ability of CS/GA film at 400 nm was significantly increased by 19.7 % and the tensile strength was nearly two times higher than that of CS film. Moreover, the CS/GA films exhibited an inspiring photoactivated bactericidal ability under 400 nm UVA light irradiation that eradicated almost 99.9 % of Staphylococcus aureus (S. aureus) cells within 60 min. To gain more insights into the antibacterial mechanism, the treated S. aureus cells were further investigated by visualizing bacterial ultrastructure and analyzing membrane properties. The results pointed to the peptidoglycan layer as the primary action target when bacteria come into contact with CS/GA films. Afterward, the intracellular oxidative lesions, disrupted bacterial integrity, and disordered membrane functional properties collectively resulted in eventual cell death. The findings revealed the unique peptidoglycan targeting and membrane disruptive mechanisms of CS/GA films, confirming the application values in controlling foodborne pathogens.


Asunto(s)
Antiinfecciosos , Quitosano , Staphylococcus aureus , Quitosano/farmacología , Quitosano/química , Ácido Gálico/farmacología , Ácido Gálico/química , Rayos Ultravioleta , Peptidoglicano , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/química , Embalaje de Alimentos/métodos
11.
Front Vet Sci ; 10: 1302801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144468

RESUMEN

The objective of this study was to examine the effects of dietary Chinese herbal medicine (CHM) consisting of Astragalus membranaceus (Fisch.) Bunge (AMT) and Codonopsis pilosula (Franch.) Nannf (CPO) extracts on growth performance, antioxidant capacity, immune status, and intestinal health of broiler chickens. Two groups were formed, each consisting of six replicates of 12 one-day-old healthy male 817 white feather broilers. Broilers were fed either a basal diet (CON group) or a basal diet supplemented with 500 mg/kg CHM. The trial lasted 50 days. The results showed that CHM supplementation resulted in enhanced feed efficiency and antioxidant capacity in both the serum and liver, while it reduced uric acid and endotoxin levels, as well as diamine oxidase activity (p < 0.05). Additionally, CHM treatment increased the height of jejunum villi and upregulated Claudin-1 expression in the jejunal mucosa accompanied by an increase in the mRNA levels of interleukin-6 (IL-6), interferon-γ (IFN-γ), interferon-ß (IFN-ß), tumor necrosis factor-α (TNF-α), and anti-inflammatory cytokine interleukin-10 (IL-10) (p < 0.05). The presence of dietary CHM caused an increase in the proportions of Bacteroidetes and unclassified Bacteroidales but led to a decrease in those of Firmicutes and Alistipes (p < 0.05). The composition of the jejunal mucosa microbiota was correlated with the feed conversion ratio, serum metabolites, and gene expression based on Spearman correlation analysis. The findings indicated that the consumption of dietary CHM improved the utilization of feed, increased the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa, and decreased the endotoxin level and activities of diamine oxidase and lactate dehydrogenase in the serum, which could potentially be linked to changes in the gut microbiota of broiler chickens.

12.
Animals (Basel) ; 13(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37760314

RESUMEN

This study aimed to investigate the impact of Bacillus subtilis HC6 on the growth performance, immunity, antioxidant capacity, and intestinal health of broilers. A total of 180 one-day-old white feather broilers were randomly divided into two experimental groups, each comprising six replicates of fifteen chicks from 1 to 50 d of age. The groups were either fed a basal diet (CON) or the same diet supplemented with 5 × 108 cfu/kg of Bacillus subtilis HC6 (BS). Our results indicated that compared with the CON, dietary supplementation with BS increased feed efficiency during d 21-50 and d 1-50 (p < 0.05). Moreover, BS supplementation enhanced antioxidant capacity in the serum and liver, and also decreased the activity of diamine oxidase and the level of endotoxins (p < 0.05). Additionally, BS treatment increased the villi height in the jejunum and ileum, increased the ratio of villus height/crypt depth in the ileum, upregulated the expression of tight junction proteins in the jejunal mucosa, and downregulated the levels of IL-22 and IFN-γ on day 50 (p < 0.05). Principal coordinates analysis yielded clear clustering of two groups; dietary BS increased the relative abundance of Bacteroidales_unclassified (genus) and Olsenella (genus), and decreased the abundance of genera Alistipes on day 50, which identified a strong correlation with FCR, serum differential metabolites, or differential gene expression in the jejunal mucosa by spearman correlation analysis. The PICRUSt2 analysis revealed that supplementation with BS enriched the pathways related to xenobiotics biodegradation and metabolism, carbohydrate metabolism, energy metabolism, signaling molecules and interaction, the digestive system, and transport and catabolism. These results demonstrated that dietary BS increased feed efficiency, antioxidant capacity, and the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa; and decreased the activity of diamine oxidase in serum, which might be attributed to the modulation of community composition and the functions of cecal microbiota in white-feathered broilers.

13.
Int J Biol Macromol ; 253(Pt 3): 126944, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37722646

RESUMEN

Exopolysaccharide (EPS), as a secondary metabolite of microorganisms, has been commonly used in the dairy industry to replace the traditional stabilizers. However, the EPS production by microorganism is generally low, which limits its application. A litchi polysaccharide (Lzp2-2) with the promoting effect on EPS production by Weissella confusa was purified. The SEM and FT-IR analysis indicated that Lzp2-2 displayed a compact netlike structure and typical bands of carbohydrates. The structure of Lzp2-2 was further elucidated, which was comprised of a major backbone structure [→3)-ß-D-Galp-(1→6)-ß-D-Galp-(1 â†’ 6)-ß-D-Galp-(1 â†’ 3)-ß-D-Glcp-(1 â†’ 6)-α-D-Glcp-(1 â†’ 3)-α-D-Glcp-(1→] linked with two side chains [α-L-Araf-(1 â†’ 5)-α-L-Araf-(1→, and ß-D-Glcp-(1 â†’ or α-L-Araf-(1→] at the O-3 and O-6) of ß-D-Galp-(1→, respectively. Finally, Lzp2-2 was applied as an additive to the medium of yoghurt fermented by W. confusa. The results indicated Lzp2-2 not only promoted the EPS production to improve the viscosity, texture and mouthfeel of yoghurt, but also facilitated the generation of other secondary metabolites (volatile organic compounds), thus elevating the flavor of yoghurt.


Asunto(s)
Litchi , Weissella , Espectroscopía Infrarroja por Transformada de Fourier , Polisacáridos/química , Weissella/química
14.
Foods ; 12(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37509812

RESUMEN

Higher alcohol, as an inevitable product of fermentation, plays an important role in the flavor and quality of Baijiu. However, the relationship between the complex microbial metabolism and the formation of higher alcohols in rice-flavor Baijiu was not clear. To investigate the relationship between microorganisms and higher alcohol production, two fermentation mashes inoculated with starters from Heyuan Jinhuangtian Liquor Co., Ltd. (Heyuan, China) as JM and Guangdong Changleshao Co., Ltd. (Meizhou, China) as CM, respectively, with significant differences in higher alcohol profiles during rice-flavor Baijiu fermentation were selected. In general, higher alcohols presented a rapid accumulation during the early fermentation stages, especially in JM, with higher and faster increases than those in CM. As for their precursors including amino acids, pyruvic acid and ketoacids, complex variations were observed during the fermentation. Metagenomic results indicated that Saccharomyces cerevisiae and Rhizopus microsporus were the microorganisms present throughout the brewing process in JM and CM, and the relative abundance of R. microsporus in JM was significantly higher than that in CM. The results of higher alcohol metabolism in JM may contribute to the regulation of higher alcohols in rice-flavor Baijiu.

15.
Food Chem ; 428: 136703, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423103

RESUMEN

The synergistic effect of the initial state of the enzyme and pressure level on the denaturation of PPO has not been clear yet, but it significantly affects the application of high hydrostatic pressure (HHP) in the enzyme-containing food processing. Solid (S-) and low/high concentration liquid (LL-/HL-) polyphenol oxidase (PPO) was used as the study object, and the microscopic conformation, molecular morphology and macroscopic activity of PPO under HHP treatments (100-400 MPa, 25 °C/30 min) were investigated by spectroscopic techniques. The results show that the initial state has a significant effect on the activity, structure, active force and substrate channel of PPO under pressure. The effec can be ranked as follows: physical state > concentration > pressure, S-PPO > LL-PPO > HL-PPO. High concentration has a weakening effect on the pressure denaturation of the PPO solution. Under high pressure, the α-helix and concentration factors play a crucial role in stabilizing the structure.


Asunto(s)
Catecol Oxidasa , Manipulación de Alimentos , Catecol Oxidasa/química , Manipulación de Alimentos/métodos , Presión Hidrostática
16.
Food Chem X ; 18: 100707, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37397187

RESUMEN

The olive vegetable is popular food owing to its unique flavor. This study innovatively used headspace-gas chromatography-ion mobility spectrometry to evaluate olive vegetables' volatiles under different conditions. A total of 57 volatile compounds were determined from olive vegetables, including 30 aldehydes, 8 ketones, 5 alcohols, 2 esters, 8 hydrocarbons, 1 furans, 3 sulfur compounds. The PCA distinguished the olive vegetable stored at different conditions by volatiles. The gallery plot showed that olive vegetables stored at 4 °C for 21 d produced more limonene, which had a desirable fruity odor. The (E)-2-octenal, (E)-2-pentenal, (E,E)-2,4-heptadienal, 5-methylfurfural, and heptanal in fresh olive vegetables were lowest and increased with storage time. Furthermore, the change of volatiles was the least when the olive vegetable was stored at 0 °C. This study can provide theoretical bases for improving the flavor quality of olive vegetables and developing traditional food for standardized industrial production.

17.
Foods ; 12(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37372538

RESUMEN

Naringin (NG), a natural flavanone glycoside, possesses a multitude of pharmacological properties, encompassing anti-inflammatory, sedative, antioxidant, anticancer, anti-osteoporosis, and lipid-lowering functions, and serves as a facilitator for the absorption of other drugs. Despite these powerful qualities, NG's limited solubility and bioavailability primarily undermine its therapeutic potential. Consequently, innovative solubilization methodologies have received considerable attention, propelling a surge of scholarly investigation in this arena. Among the most promising solutions is the enhancement of NG's solubility and physiological activity without compromising its inherent active structure, therefore enabling the formulation of non-toxic and benign human body preparations. This article delivers a comprehensive overview of NG and its physiological activities, particularly emphasizing the impacts of structural modification, solid dispersions (SDs), inclusion compound, polymeric micelle, liposomes, and nanoparticles on NG solubilization. By synthesizing current research, this research elucidates the bioavailability of NG, broadens its clinical applicability, and paves the way for further exploration and expansion of its application spectrum.

18.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37283048

RESUMEN

Sinensetin is among the most ubiquitous polyphenols in citrus fruit and recently has been extensively studied for its ability to prevent or treat diseases. The current literature on the bioavailability of sinensetin and its derivatives was reviewed and the potential ameliorative effects of metabolic syndrome in humans were evaluated. Sinensetin and its derivatives mainly aggregated in the large intestine and extensively metabolized through gut microbiota (GM) and the liver. So intestinal microorganisms had a significant influence on the absorption and metabolism of sinensetin. Interestingly, not only GM acted on sinensetin to metabolize them, but sinensetin also regulated the composition of GM. Thus, sinensetin was metabolized as methyl, glucuronide and sulfate metabolites in the blood and urine. Furthermore, sinensetin was reported to have the beneficial effect of ameliorating metabolic syndromes, including disorders of lipid metabolism (obesity, NAFLD, atherosclerosis), glucose metabolism disorder (insulin resistant) and inflammation, in terms of improving the composition of intestinal flora and modulating metabolic pathway factors in relevant tissues. The present work strongly elucidated the potential mechanism of sinensetin in improving metabolic disorders and supported the contribution of sinensetin to health benefits, thus offering a better perspective in understanding the role played by sinensetin in human health.

19.
Poult Sci ; 102(8): 102825, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356297

RESUMEN

A total of 480 one-day-old male yellow-feathered broilers were randomly divided into 4 groups with 6 replicates of 20 chicks per replicate. A basal diet was administered to the control group (CON), whereas CML350, CML500, and CML1000 groups were fed with basal diet supplemented with 350, 500, and 1,000 mg/kg of lauric acid monoglyceride and cinnamaldehyde complex, respectively. However, adding 500 mg/kg of lauric acid monoglyceride and cinnamaldehyde complex improved weight gain (P < 0.01), enhanced intestinal morphology, increased serum total protein and albumin content, and total antioxidant capacity (P < 0.01), and significantly increased the Chao1 and Ace indices (P < 0.01), indicating an increase in the richness of the gut microbiota. At the phylum level, CML500 group reduced the abundance of Fusobacteriota at 21 d and Proteobacteria at 42 d (P < 0.01). At the genus level, CML500 group increased the abundance of Faecalibacterium and Alistipes at 42 d (P < 0.01) and decreased the abundance of Escherichia-Shigella (P < 0.01). At the species level, CML500 group reduced the abundance of Escherichia coli at 42 d (P < 0.01) and increased the abundance of Alistipes_sp_CHKCI003 at 42 d (P < 0.01). According to these results, adding 500 mg/kg of lauric acid monoglyceride and cinnamaldehyde complex in feed can improve the growth performance, intestinal morphology, and gut microbiota of yellow-feathered broilers.


Asunto(s)
Microbioma Gastrointestinal , Masculino , Animales , Pollos , Monoglicéridos , Compuestos Orgánicos , Bacteroidetes , Suplementos Dietéticos , Escherichia coli , Alimentación Animal , Dieta/veterinaria
20.
J Sci Food Agric ; 103(14): 6767-6779, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37209396

RESUMEN

Honey has been used not only as a food source but also for medicinal purposes. Recent studies have indicated that honey exhibits antioxidant, hepatoprotective, hypolipidemic, hypoglycemic and anti-obesity properties, as well as anticancer, anti-atherosclerotic, hypotensive, neuroprotective and immunomodulatory activities. These health benefits of honey could be attributed to its wide range of nutritional components, including polysaccharides and polyphenols, which have been proven to possess various beneficial properties. It is notable that the composition of honey can also be affected by nectar, season, geography and storage condition. Moreover, the safety of honey requires caution to avoid any potential safety incidents. Therefore, this review aims to provide recent research regarding the chemical composition, biological activities and safety of honey, which might be attributed to comprehensive utilization of honey. © 2023 Society of Chemical Industry.


Asunto(s)
Miel , Miel/análisis , Polifenoles , Antioxidantes/química , Néctar de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA