Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Appl Environ Microbiol ; 90(9): e0123524, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39133001

RESUMEN

Mucin glycoproteins are a significant source of carbon for the gut bacteria. Various gut microbial species possess diverse hydrolytic enzymes and catabolic pathways for breaking down mucin glycans, resulting in competition for the limited nutrients within the gut environment. Adherence to mucin glycans represents a crucial strategy used by gut microbes to access nutrient reservoirs. Understanding these properties is pivotal for comprehending the survival mechanisms of bacteria in the gastrointestinal tract. However, characterization of individual strains within the vast array of coexisting bacteria in the microbiome is challenging. To investigate this, we developed mucin-immobilized particles by immobilizing porcine gastric mucin (PGM) onto glass beads chemically modified with boronic acid. These PGM-immobilized particles were then anaerobically cultured with human fecal microbiota, and the bacteria adhering to PGM were isolated. Interestingly, the microbiome composition remained largely unchanged irrespective of PGM immobilization. Nonetheless, bacteria isolated from PGM-immobilized glass particles exhibited notably higher N-acetylgalactosaminidase activity compared to the control beads. Furthermore, Bacteroides strains isolated from PGM-immobilized glass particles displayed enhanced adhesive and metabolic properties to PGM. These findings underscore the utility of PGM particles in enriching and isolating specific microbes. Moreover, they highlight substantial differences in microbial properties at the strain level. We anticipate that PGM-immobilized particles will advance culture-based microbiome research, emphasizing the significance of strain-level characterization. IMPORTANCE: Metabolism of mucin glycans by gut bacteria represents a crucial strategy for accessing nutrient reservoirs. The efficacy of mucin glycan utilization among gut bacteria hinges on the metabolic capabilities of individual strains, necessitating meticulous strain-level characterization. In this investigation, we used glass beads chemically immobilized with mucins to selectively enrich bacteria from fecal fermentation cultures, based on their superior adhesion to and metabolism of mucin glycoproteins. These findings lend support to the hypothesis that the physical interactions between bacteria and mucin glycoprotein components directly correlate with their capacity to utilize mucins as nutrient sources. Furthermore, our study implies that physical proximity may significantly influence bacterial nutrient acquisition within the ecosystem, facilitating gut bacteria's access to carbohydrate components.


Asunto(s)
Bacterias , Adhesión Bacteriana , Microbioma Gastrointestinal , Animales , Porcinos , Humanos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Heces/microbiología , Mucinas/metabolismo , Mucinas Gástricas/metabolismo
2.
Gut Microbes ; 16(1): 2347728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706226

RESUMEN

Indole in the gut is formed from dietary tryptophan by a bacterial tryptophan-indole lyase. Indole not only triggers biofilm formation and antibiotic resistance in gut microbes but also contributes to the progression of kidney dysfunction after absorption by the intestine and sulfation in the liver. As tryptophan is an essential amino acid for humans, these events seem inevitable. Despite this, we show in a proof-of-concept study that exogenous indole can be converted to an immunomodulatory tryptophan metabolite, indole-3-lactic acid (ILA), by a previously unknown microbial metabolic pathway that involves tryptophan synthase ß subunit and aromatic lactate dehydrogenase. Selected bifidobacterial strains converted exogenous indole to ILA via tryptophan (Trp), which was demonstrated by incubating the bacterial cells in the presence of (2-13C)-labeled indole and l-serine. Disruption of the responsible genes variedly affected the efficiency of indole bioconversion to Trp and ILA, depending on the strains. Database searches against 11,943 bacterial genomes representing 960 human-associated species revealed that the co-occurrence of tryptophan synthase ß subunit and aromatic lactate dehydrogenase is a specific feature of human gut-associated Bifidobacterium species, thus unveiling a new facet of bifidobacteria as probiotics. Indole, which has been assumed to be an end-product of tryptophan metabolism, may thus act as a precursor for the synthesis of a host-interacting metabolite with possible beneficial activities in the complex gut microbial ecosystem.


Asunto(s)
Bifidobacterium , Microbioma Gastrointestinal , Indoles , Triptófano , Triptófano/metabolismo , Humanos , Indoles/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium/genética , Triptófano Sintasa/metabolismo , Triptófano Sintasa/genética , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo
3.
Microbiome Res Rep ; 2(4): 31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045925

RESUMEN

Aim: Bifidobacteria benefit host health and homeostasis by breaking down diet- and host-derived carbohydrates to produce organic acids in the intestine. However, the sugar utilization preference of bifidobacterial species is poorly understood. Thus, this study aimed to investigate the sugar utilization preference (i.e., glucose or lactose) of various bifidobacterial species. Methods: Strains belonging to 40 bifidobacterial species/subspecies were cultured on a modified MRS medium supplemented with glucose and/or lactose, and their preferential sugar utilization was assessed using high-performance thin-layer chromatography. Comparative genomic analysis was conducted with a focus on genes involved in lactose and glucose uptake and genes encoding for carbohydrate-active enzymes. Results: Strains that preferentially utilized glucose or lactose were identified. Almost all the lactose-preferring strains harbored the lactose symporter lacS gene. However, the comparative genomic analysis could not explain all their differences in sugar utilization preference. Analysis based on isolate source revealed that all 10 strains isolated from humans preferentially utilized lactose, whereas all four strains isolated from insects preferentially utilized glucose. In addition, bifidobacterial species isolated from hosts whose milk contained higher lactose amounts preferentially utilized lactose. Lactose was also detected in the feces of human infants, suggesting that lactose serves as a carbon source not only for infants but also for gut microbes in vivo. Conclusion: The different sugar preference phenotypes of Bifidobacterium species may be ascribed to the residential environment affected by the dietary habits of their host. This study is the first to systematically evaluate the sugar uptake preference of various bifidobacterial species.

4.
Microbiome Res Rep ; 2(2): 12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38047276

RESUMEN

Aim: Dietary plant fibers affect gut microbiota composition; however, the underlying microbial degradation pathways are not fully understood. We previously discovered 3-O-α-D-galactosyl-α-L-arabinofuranosidase (GAfase), a glycoside hydrolase family 39 enzyme involved in the assimilation of side chains of arabinogalactan protein (AGP), from Bifidobacterium longum subsp. longum (B. longum) JCM7052. Although GAfase homologs are not highly prevalent in the Bifidobacterium genus, several Bifidobacterium strains possess the homologs. To explore the differences in substrate specificity among the homologs, a homolog of B. longum GAfase in Bifidobacterium pseudocatenulatum MCC10289 (MCC10289_0425) was characterized. Methods: Gum arabic, larch, wheat AGP, and sugar beet arabinan were used to determine the substrate specificity of the MCC10289_0425 protein. An amino acid replacement was introduced into GAfase to identify a critical residue that governs the differentiation of substrate specificity. The growth of several Bifidobacterium strains on ß-L-arabinopyranosyl disaccharide and larch AGP was examined. Results: MCC10289_0425 was identified to be an unprecedented 3-O-ß-L-arabinopyranosyl-α-L-arabinofuranosidase (AAfase) with low GAfase activity. A single amino acid replacement (Asn119 to Tyr) at the catalytic site converted GAfase into AAfase. AAfase releases sugar source from AGP, thereby allowing B. pseudocatenulatum growth. Conclusion: Bifidobacteria have evolved several homologous enzymes with overlapping but distinct substrate specificities depending on the species. They have acquired different fitness abilities to respond to diverse plant polysaccharide structures.

5.
Front Microbiol ; 14: 1155438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125172

RESUMEN

Examining how host cells affect metabolic behaviors of probiotics is pivotal to better understand the mechanisms underlying the probiotic efficacy in vivo. However, studies to elucidate the interaction between probiotics and host cells, such as intestinal epithelial cells, remain limited. Therefore, in this study, we performed a comprehensive metabolome analysis of a co-culture containing Bifidobacterium breve MCC1274 and induced pluripotent stem cells (iPS)-derived small intestinal-like cells. In the co-culture, we observed a significant increase in several amino acid metabolites, including indole-3-lactic acid (ILA) and phenyllactic acid (PLA). In accordance with the metabolic shift, the expression of genes involved in ILA synthesis, such as transaminase and tryptophan synthesis-related genes, was also elevated in B. breve MCC1274 cells. ILA production was enhanced in the presence of purines, which were possibly produced by intestinal epithelial cells (IECs). These findings suggest a synergistic action of probiotics and IECs, which may represent a molecular basis of host-probiotic interaction in vivo.

6.
Appl Environ Microbiol ; 89(3): e0219022, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36847513

RESUMEN

The human gastrointestinal tract is inhabited by trillions of symbiotic bacteria that form a complex ecological community and influence human physiology. Symbiotic nutrient sharing and nutrient competition are the most studied relationships in gut commensals, whereas the interactions underlying homeostasis and community maintenance are not fully understood. Here, we provide insights into a new symbiotic relationship wherein the sharing of secreted cytoplasmic proteins, called "moonlighting proteins," between two heterologous bacterial strains (Bifidobacterium longum and Bacteroides thetaiotaomicron) was observed to affect the adhesion of bacteria to mucins. B. longum and B. thetaiotaomicron were cocultured using a membrane-filter system, and in this system the cocultured B. thetaiotaomicron cells showed greater adhesion to mucins compared to that shown by monoculture cells. Proteomic analysis showed the presence of 13 B. longum-derived cytoplasmic proteins on the surface of B. thetaiotaomicron. Moreover, incubation of B. thetaiotaomicron with the recombinant proteins GroEL and elongation factor Tu (EF-Tu)-two well-known mucin-adhesive moonlighting proteins of B. longum-led to an increase in the adhesion of B. thetaiotaomicron to mucins, a result attributed to the localization of these proteins on the B. thetaiotaomicron cell surface. Furthermore, the recombinant EF-Tu and GroEL proteins were observed to bind to the cell surface of several other bacterial species; however, the binding was species dependent. The present findings indicate a symbiotic relationship mediated by the sharing of moonlighting proteins among specific strains of B. longum and B. thetaiotaomicron. IMPORTANCE The adhesion of intestinal bacteria to the mucus layer is an important colonization strategy in the gut environment. Generally, the bacterial adhesion process is a characteristic feature of the individual cell surface-associated adhesion factors secreted by a particular bacterium. In this study, coculture experiments between Bifidobacterium and Bacteroides show that the secreted moonlighting proteins adhere to the cell surface of coexisting bacteria and alter the adhesiveness of the bacteria to mucins. This finding indicates that the moonlighting proteins act as adhesion factors for not only homologous strains but also for coexisting heterologous strains. The presence of a coexisting bacterium in the environment can significantly alter the mucin-adhesive properties of another bacterium. The findings from this study contribute to a better understanding of the colonization properties of gut bacteria through the discovery of a new symbiotic relationship between them.


Asunto(s)
Factor Tu de Elongación Peptídica , Proteómica , Humanos , Factor Tu de Elongación Peptídica/metabolismo , Tracto Gastrointestinal/microbiología , Mucinas/metabolismo , Bacteroides/metabolismo
7.
Food Res Int ; 163: 112308, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596205

RESUMEN

Probiotics and prebiotics have beneficial effects on host physiology via metabolites from the gut microbiota in addition to their own. Here, we used a pH-controlled single-batch fermenter as a human gut microbiota model. We conducted fecal fermentation with Bifidobacterium breve MCC1274 (probiotic), lactulose (prebiotic), or a combination of both (synbiotic) to evaluate their influence on the gut environment. Fecal inoculum without the probiotic and prebiotic was used as the control. Principal coordinate analysis (PCoA), based on the composition of gut microbiota, showed a significant difference among the groups. The relative abundance of Bifidobacterium was significantly higher in the synbiotic group, compared to that in the other three treatment groups. The relative abundance of Blautia was the highest in the control group among the four groups. CE-TOFMS and LC-TOFMS showed that the number of metabolites detected in the synbiotic group was the highest (352 in total); 29 of the 310 hydrophilic metabolites and 17 of the 107 lipophilic metabolites were significantly different among the four groups in the Kruskal-Wallis test. A clustering based on 46 metabolites indicated that tryptophan-metabolites such as indole-3-lactic acid (ILA), indole-3-ethanol, and indole-3-carboxaldehyde, were included in a sub cluster composed of metabolites enriched in the synbiotic group. Spermidine, a major polyamine, was enriched in the two groups supplemented with the probiotic whereas spermine was enriched only in the synbiotic group. Not all metabolites enriched in the probiotic and/or synbiotic groups were found in the monocultures of the probiotic strain with or without the prebiotics. This implies that some of the metabolites were produced through the interaction of the fecal microbiota with the inoculated probiotic strain. Co-abundance networking analysis indicated the differences in the correlations between the relative abundance of the fecal microbiota genus and the tryptophan metabolites in each group. There was a strong correlation between ldh4 gene abundance and ILA concentration in the fecal fermentation. The copy number of ldh4 gene was significantly higher in the groups with the probiotic than that in the control group. In conclusion, synbiotics could enhance the production of signaling molecules in the gut environment. Our results provide an insight into more effective administration of probiotics at the molecular level.


Asunto(s)
Bifidobacterium breve , Probióticos , Simbióticos , Humanos , Lactulosa , Triptófano , Prebióticos
8.
Biosci Microbiota Food Health ; 42(1): 81-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36660598

RESUMEN

The relationships between various diseases and the human gut microbiota (GM) have been revealed. However, the relationships between the human abdominal aortic aneurysm (AAA) and GM remains unknown. The aim of this cross-sectional study was to clarify the association between the human AAA and GM. Stool samples from 30 consecutive patients with AAA before aneurysm repair and those of 30 controls without vascular diseases were analyzed by 16S rRNA gene (V3-4) sequencing using an Illumina MiSeq system and QIIME 2. There was no significant difference in age (75 vs. 75 years) or gender (80% vs. 87% males) between the groups. No significant difference in GM composition was observed in principal coordinate analysis between the two groups, whereas the AAA group showed a significantly lower abundance of Bifidobacterium adolescentis (p<0.01) at the species level than the controls. This study demonstrated that the abundance of B. adolescentis decreased in patients with AAA. This is the first study to show the characteristics of the GM in patients with AAA. Studies are needed to reveal if causal relationships exists between the human AAA and GM.

9.
Am J Gastroenterol ; 118(3): 561-568, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216361

RESUMEN

INTRODUCTION: Few reports exist regarding the therapeutic effects of probiotics on chronic constipation in elderly individuals. This study evaluated the effects of Bifidobacterium longum BB536 in elderly individuals with chronic constipation. METHODS: This was a randomized, double-blind placebo-controlled, parallel-group superiority trial in Japan (UMIN 000033031). Eighty older adults diagnosed with chronic constipation were randomly assigned (1:1) to receive either probiotics ( B. longum BB536, 5 × 10 10 colony-forming unit, n = 39) or placebo (n = 41) once daily for up to 4 weeks. The severity of constipation was evaluated using the Constipation Scoring System. The primary end point was the difference in the changes from baseline in the constipation scoring system total score between the 2 groups at week 4. RESULTS: A total of 79 patients (mean age of 77.9 years), including 38 patients in the BB536 group and 41 in the placebo group, completed the study. The primary end point was not significant ( P = 0.074), although there was significant improvement ( P < 0.01) in the BB536 group from baseline to week 4, but there were no significant changes in the placebo group. There was a significant difference and a tendency toward a difference in the changes from baseline on the stool frequency ( P = 0.008) and failure of evacuation ( P = 0.051) subscales, respectively, at week 4 between the 2 groups. Few adverse events related to the probiotics were observed. DISCUSSION: The primary end points were not significant. However, probiotic supplementation significantly improved bowel movements. These results suggest that B. longum BB536 supplementation is safe and partially effective for improving chronic constipation in elderly individuals.


Asunto(s)
Bifidobacterium longum , Estreñimiento , Probióticos , Anciano , Humanos , Bifidobacterium , Estreñimiento/diagnóstico , Estreñimiento/terapia , Defecación , Método Doble Ciego , Probióticos/efectos adversos , Probióticos/uso terapéutico , Resultado del Tratamiento , Enfermedad Crónica
10.
Cancers (Basel) ; 14(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36358797

RESUMEN

Characteristic bile duct and gut microbiota have been identified in patients with chronic biliary tract disease. This study aimed to characterize the fecal and bile microbiota in biliary tract cancer (BTC) patients and their relationship. Patients with BTC (n = 30) and benign biliary disease (BBD) without cholangitis (n = 11) were included. Ten healthy, age-matched subjects were also recruited for fecal microbiota comparison. The fecal and bile duct microbiotas were analyzed by sequencing the 16S rRNA gene V3-V4 region. Live bacteria were obtained in the bile from three BTC patients by culture, and metagenomics-based identification was performed. Linear discriminant analysis effect size showed a higher Enterobacteriaceae abundance and a lower Clostridia abundance, including that of Faecalibacterium and Coprococcus, in the BTC patients than in the other subjects. Ten of 17 operational taxonomic units (OTUs) assigned to Enterobacteriaceae in the bile were matched with the OTUs found in the BTC subject fecal samples. Furthermore, a bile-isolated strain possessed the carcinogenic bacterial colipolyketide synthase-encoding gene. Enterobacteriaceae was enriched in the BTC feces, and more than half of Enterobacteriaceae in the bile matched that in the feces at the OTU level. Our data suggests that fecal microbiota dysbiosis may contribute to BTC onset.

11.
Front Microbiol ; 13: 913624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722280

RESUMEN

Blautia is a genus of anaerobic bacteria that is widely distributed in the mammalian gut. Recently, an increasing body of research has demonstrated a link between this genus and human health, suggesting applications as a novel probiotic strain. Moreover, we have previously shown that 2'-fucosyllactose (2'-FL), a major component of human milk oligosaccharides, increases the relative abundance of Blautia sp., particularly Blautia wexlerae, in the cultured fecal microbiota of healthy adults using a pH-controlled single-batch fermenter. However, the effects of 2'-FL on Blautia proliferation vary among individuals. In this study, we assessed the impact of the intrinsic gut microbiota on the prebiotic effects of 2'-FL. Metagenomic analysis of feces collected from all donors showed that the homolog of the intracellular GH95 α-l-fucosidase gene was considerably enriched in two non-responders (individuals who showed no increase in Blautia proliferation), whereas the homologous genes encoding extracellular α-l-fucosidase were more abundant in responders, suggesting that lactose and fucose released into the environment could be substrates mediating the growth of Blautia. In vitro assays confirmed the ability of B. wexlerae to utilize the two carbohydrates but not 2'-FL. We also observed that B. wexlerae utilized fucose released from 2'-FL by Bifidobacterium bifidum, which possessed extracellular GH95 α-l-fucosidase, in co-cultures of these two organisms. Finally, increasing the proportion of extracellular GH95 by the addition of a B. bifidum strain led to Blautia proliferation by 2'-FL in fecal cultures of the two non-responders. These findings provided valuable perspectives on individualized nutritional approaches to properly control the gut microbiota. Future clinical trials are needed to obtain further insights into the characteristics of responders vs. non-responders.

12.
Appl Environ Microbiol ; 88(6): e0218721, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35108084

RESUMEN

Gum arabic is an arabinogalactan protein (AGP) that is effective as a prebiotic for the growth of bifidobacteria in the human intestine. We recently identified a key enzyme in the glycoside hydrolase (GH) family 39, 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase), for the assimilation of gum arabic AGP in Bifidobacterium longum subsp. longum. The enzyme released α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP and facilitated the action of other enzymes for degrading the AGP backbone and modified sugar. In this study, we identified an α-l-arabinofuranosidase (BlArafE; encoded by BLLJ_1850), a multidomain enzyme with both GH43_22 and GH43_34 catalytic domains, as a critical enzyme for the degradation of modified α-l-arabinofuranosides in gum arabic AGP. Site-directed mutagenesis approaches revealed that the α1,3/α1,4-Araf double-substituted gum arabic AGP side chain was initially degraded by the GH43_22 domain and subsequently cleaved by the GH43_34 domain to release α1,3-Araf and α1,4-Araf residues, respectively. Furthermore, we revealed that a tetrasaccharide, α-l-Rhap-(1→4)-ß-d-GlcpA-(1→6)-ß-d-Galp-(1→6)-d-Gal, was a limited degradative oligosaccharide in the gum arabic AGP fermentation of B. longum subsp. longum JCM7052. The oligosaccharide was produced from gum arabic AGP by the cooperative action of the three cell surface-anchoring enzymes, GAfase, exo-ß1,3-galactanase (Bl1,3Gal), and BlArafE, on B. longum subsp. longum JCM7052. Furthermore, the tetrasaccharide was utilized by the commensal bacteria. IMPORTANCE Terminal galactose residues of the side chain of gum arabic arabinogalactan protein (AGP) are mainly substituted by α1,3/α1,4-linked Araf and ß1,6-linked α-l-Rhap-(1→4)-ß-d-GlcpA residues. This study found a multidomain BlArafE with GH43_22 and GH43_34 catalytic domains showing cooperative action for degrading α1,3/α1,4-linked Araf of the side chain of gum arabic AGP. In particular, the GH43_34 domain of BlArafE was a novel α-l-arabinofuranosidase for cleaving the α1,4-Araf linkage of terminal galactose. α-l-Rhap-(1→4)-ß-d-GlcpA-(1→6)-ß-d-Galp-(1→6)-d-Gal tetrasaccharide was released from gum arabic AGP by the cooperative action of GAfase, GH43_24 exo-ß-1,3-galactanase (Bl1,3Gal), and BlArafE and remained after B. longum subsp. longum JCM7052 culture. Furthermore, in vitro assimilation test of the remaining oligosaccharide using Bacteroides species revealed that cross-feeding may occur from bifidobacteria to other taxonomic groups in the gut.


Asunto(s)
Bifidobacterium longum , Bifidobacterium longum/metabolismo , Galactanos/metabolismo , Glicósido Hidrolasas/metabolismo , Goma Arábiga , Humanos , Oligosacáridos/química
13.
Microbiome Res Rep ; 1(3): 20, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38046362

RESUMEN

Aim: 16S rRNA gene-based microbiota analyses (16S metagenomes) using next-generation sequencing (NGS) technologies are widely used to examine the microbial community composition in environmental samples. However, the sequencing capacity of NGS is sometimes insufficient to cover the whole microbial community, especially when analyzing soil and fecal microbiotas. This limitation may have hampered the detection of minority species that potentially affect microbiota formation and structure. Methods: We developed a simple method, termed 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer), that not only enhances minority species detection but also increases the accuracy of their abundance estimation. The method relies on the inhibition of normal amplicon formation of the 16S rRNA gene of a target major (abundant) species during the first PCR step. The addition of a biotinylated primer that is complementary to the variable sequence of the V3-V4 region of the target species inhibits a normal amplification process to form an aberrant short amplicon. The fragment is then captured by streptavidin beads for removal from the reaction mixture, and the resulting mixture is utilized for the second PCR with barcode-tag primers. Thus, this method only requires two additional experimental procedures to the conventional 16S metagenome analysis. A proof-of-concept experiment was first conducted using a mock sample consisting of the genomes of 14 bacterial species. Then, the method was applied to infant fecal samples using a Bifidobacterium-specific inhibitory primer (n = 11). Results: As a result, the reads assigned to the family Bifidobacteriaceae decreased on average from 16,657 to 1718 per sample without affecting the total read counts (36,073 and 34,778 per sample for the conventional and DRIP methods, respectively). Furthermore, the minority species detection rate increased with neither affecting Bray-Curtis dissimilarity calculated by omitting the target Bifidobacterium species (median: 0.049) nor changing the relative abundances of the non-target species. While 115 amplicon sequence variants (ASVs) were unique to the conventional method, 208 ASVs were uniquely detected for the DRIP method. Moreover, the abundance estimation for minority species became more accurate, as revealed thorough comparison with the results of quantitative PCR analysis. Conclusion: The 16S metagenome-DRIP method serves as a useful technique to grasp a deeper and more accurate microbiota composition when combined with conventional 16S metagenome analysis methods.

14.
Microorganisms ; 9(11)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835522

RESUMEN

Hydroxycarboxylic acid receptor 3 (HCA3) was recently identified in the genomes of humans and other hominids but not in other mammals. We examined the production of HCA3 ligands by Bifidobacterium spp. In addition to 4-hydroxyphenyllactic acid, phenyllactic acid (PLA), and indole-3-lactic acid (ILA), we found that LeuA was produced by Bifidobacterium as an HCA3 ligand. The four ligands produced were the mixtures of enantiomers, and D-ILA, D-PLA, and D-LeuA showed stronger activity of the HCA3 ligand than their respective L-isomers. However, there was no difference in AhR activity between the two ILA enantiomers. These results provide new insights into the HCA3 ligands produced by Bifidobacterium and suggest the importance of investigating the absolute stereo structures of these metabolites.

15.
Food Res Int ; 144: 110326, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34053530

RESUMEN

Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii.


Asunto(s)
Faecalibacterium prausnitzii , Microbioma Gastrointestinal , Alginatos , Bacteroides , Humanos , ARN Ribosómico 16S
16.
Commun Biol ; 4(1): 541, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972677

RESUMEN

This study aims to understand the mechanistic basis underlying the response of Bifidobacterium to lactulose ingestion in guts of healthy Japanese subjects, with specific focus on a lactulose transporter. An in vitro assay using mutant strains of Bifidobacterium longum subsp. longum 105-A shows that a solute-binding protein with locus tag number BL105A_0502 (termed LT-SBP) is primarily involved in lactulose uptake. By quantifying faecal abundance of LT-SBP orthologues, which is defined by phylogenetic analysis, we find that subjects with 107 to 109 copies of the genes per gram of faeces before lactulose ingestion show a marked increase in Bifidobacterium after ingestion, suggesting the presence of thresholds between responders and non-responders to lactulose. These results help predict the prebiotics-responder and non-responder status and provide an insight into clinical interventions that test the efficacy of prebiotics.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Bifidobacterium/crecimiento & desarrollo , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Lactulosa/administración & dosificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bifidobacterium/efectos de los fármacos , Bifidobacterium/metabolismo , Estudios Transversales , Femenino , Fármacos Gastrointestinales/administración & dosificación , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Persona de Mediana Edad , Adulto Joven
17.
BMC Microbiol ; 21(1): 151, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016052

RESUMEN

BACKGROUND: Inter-individual variations in gut microbiota composition are observed even among healthy populations. The gut microbiota may exhibit a unique composition depending on the country of origin and race of individuals. To comprehensively understand the link between healthy gut microbiota and host state, it is beneficial to conduct large-scale cohort studies. The aim of the present study was to elucidate the integrated and non-redundant factors associated with gut microbiota composition within the Japanese population by 16S rRNA sequencing of fecal samples and questionnaire-based covariate analysis. RESULTS: A total of 1596 healthy Japanese individuals participated in this study via two independent cohorts, NIBIOHN cohort (n = 954) and MORINAGA cohort (n = 642). Gut microbiota composition was described and the interaction of these microorganisms with metadata parameters such as anthropometric measurements, bowel habits, medical history, and lifestyle were obtained. Thirteen genera, including Alistipes, Anaerostipes, Bacteroides, Bifidobacterium, Blautia, Eubacterium halli group, Faecalibacterium, Fusicatenibacter, Lachnoclostridium, Parabacteroides, Prevotella_9, Roseburia, and Subdoligranulum were predominant among the two cohorts. On the basis of univariate analysis for overall microbiome variation, 18 matching variables exhibited significant association in both cohorts. A stepwise redundancy analysis revealed that there were four common covariates, Bristol Stool Scale (BSS) scores, gender, age, and defecation frequency, displaying non-redundant association with gut microbial variance. CONCLUSIONS: We conducted a comprehensive analysis of gut microbiota in healthy Japanese individuals, based on two independent cohorts, and obtained reliable evidence that questionnaire-based covariates such as frequency of bowel movement and specific dietary habit affects the microbial composition of the gut. To our knowledge, this was the first study to investigate integrated and non-redundant factors associated with gut microbiota among Japanese populations.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/clasificación , Bacterias/genética , Estudios de Cohortes , ADN Bacteriano/genética , Defecación , Heces/microbiología , Conducta Alimentaria , Femenino , Voluntarios Sanos , Humanos , Japón , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Adulto Joven
18.
Front Microbiol ; 12: 610080, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897631

RESUMEN

The colonization and persistence of probiotics introduced into the adult human gut appears to be limited. It is uncertain, however, whether probiotics can successfully colonize the intestinal tracts of full-term and premature infants. In this study, we investigated the colonization and the effect of oral supplementation with Bifidobacterium breve M-16V on the gut microbiota of low birth weight (LBW) infants. A total of 22 LBW infants (12 infants in the M-16V group and 10 infants in the control group) were enrolled. B. breve M-16V was administrated to LBW infants in the M-16V group from birth until hospital discharge. Fecal samples were collected from each subject at weeks (3.7-9.3 weeks in the M-16V group and 2.1-6.1 weeks in the control group) after discharge. qPCR analysis showed that the administrated strain was detected in 83.3% of fecal samples in the M-16V group (at log10 8.33 ± 0.99 cell numbers per gram of wet feces), suggesting that this strain colonized most of the infants beyond several weeks post-administration. Fecal microbiota analysis by 16S rRNA gene sequencing showed that the abundance of Actinobacteria was significantly higher (P < 0.01), whereas that of Proteobacteria was significantly lower (P < 0.001) in the M-16V group as compared with the control group. Notably, the levels of the administrated strain and indigenous Bifidobacterium bacteria were both significantly higher in the M-16V group than in the control group. Our findings suggest that oral administration of B. breve M-16V led to engraftment for at least several weeks post-administration and we observed a potential overall improvement in microbiota formation in the LBW infants' guts.

19.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33674431

RESUMEN

Gum arabic arabinogalactan (AG) protein (AGP) is a unique dietary fiber that is degraded and assimilated by only specific strains of Bifidobacterium longum subsp. longum Here, we identified a novel 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052 and classified it into glycoside hydrolase family 39 (GH39). GAfase released α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP and ß-l-Arap-(1→3)-l-Ara from larch AGP, and the α-d-Galp-(1→3)-l-Ara release activity was found to be 594-fold higher than that of ß-l-Arap-(1→3)-l-Ara. The GAfase gene was part of a gene cluster that included genes encoding a GH36 α-galactosidase candidate and ABC transporters for the assimilation of the released α-d-Galp-(1→3)-l-Ara in B. longum Notably, when α-d-Galp-(1→3)-l-Ara was removed from gum arabic AGP, it was assimilated by both B. longum JCM7052 and the nonassimilative B. longum JCM1217, suggesting that the removal of α-d-Galp-(1→3)-l-Ara from gum arabic AGP by GAfase permitted the cooperative action with type II AG degradative enzymes in B. longum The present study provides new insight into the mechanism of gum arabic AGP degradation in B. longumIMPORTANCE Bifidobacteria harbor numerous carbohydrate-active enzymes that degrade several dietary fibers in the gastrointestinal tract. B. longum JCM7052 is known to exhibit the ability to assimilate gum arabic AGP, but the key enzyme involved in the degradation of gum arabic AGP remains unidentified. Here, we cloned and characterized a GH39 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052. The enzyme was responsible for the release of α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP. The presence of a gene cluster including the GAfase gene is specifically observed in gum arabic AGP assimilative strains. However, GAfase carrier strains may affect GAfase noncarrier strains that express other type II AG degradative enzymes. These findings provide insights into the bifidogenic effect of gum arabic AGP.


Asunto(s)
Proteínas Bacterianas/genética , Bifidobacterium/enzimología , Glicósido Hidrolasas/genética , Proteínas Bacterianas/metabolismo , Bifidobacterium/genética , Galactanos/metabolismo , Glicósido Hidrolasas/metabolismo , Goma Arábiga
20.
Gut Microbes ; 13(1): 1-11, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33430687

RESUMEN

We previously investigated the gut microbiota of 453 healthy Japanese subjects aged 0 to 104 years and found that the composition of the gut microbiota could be classified into some age-related clusters. In this study, we compared fecal metabolites between age-matched and age-mismatched elderly subjects to examine the roles of the gut microbiota in the health of the elderly. Fecal metabolites in 16 elderly subjects who fell into an age-matched cluster (elderly-type gut microbiota group, E-GM) and another 16 elderly subjects who fell into an age-mismatched cluster (adult-type gut microbiota group, A-GM) were measured by CE-TOF-MS. A total of eight metabolites were significantly different between the groups: cholic acid and taurocholic acid were enriched in the A-GM group, whereas choline, trimethylamine (TMA), N8-acetylspermidine, propionic acid, 2-hydroxy-4-methylvaleric acid, and 5-methylcytosine were enriched in the E-GM group. Some metabolites (choline, TMA, N8-acetylspermidine) elevated in the E-GM group were metabolites or precursors reported as risk factors for age-associated diseases such as arteriosclerosis and colorectal cancer. The abundance of some species belongs to Proteobacteria, which were known as TMA-producing bacteria, was increased in the E-GM group and correlated with fecal TMA levels. In vitro assays showed that these elderly-type fecal metabolites suppressed the expression of genes related to tight junctions in normal colonic epithelial cells and induced the expression of inflammatory cytokines in colon cancer cells. These findings suggest that metabolites produced by the aged gut microbiota could contribute to intestinal and systemic homeostasis and could be targeted for preventing aging-associated diseases.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Metaboloma/fisiología , Anciano , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Colina/análisis , Colina/metabolismo , Colina/farmacología , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Heces/química , Heces/microbiología , Humanos , Metilaminas/análisis , Metilaminas/metabolismo , Metilaminas/farmacología , Factores de Riesgo , Espermidina/análogos & derivados , Espermidina/análisis , Espermidina/metabolismo , Espermidina/farmacología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA