Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.194
1.
Biomed Environ Sci ; 37(4): 377-386, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38727160

Objective: This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans (C. elegans). Methods: In this study, the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C. elegans. The worms were fed Escherichia coli OP50 ( E. coli OP50), glucose, and different concentrations of LFBEP-C1. Body size, lifespan, movement, triglyceride content, and gene expression were analyzed. The results were analyzed using ANOVA and Tukey's multiple comparison test. Results: Compared with the model group, the head-swing frequency of C. elegans in the group of LFBEP-C1 at 20 µg/mL increased by 33.88%, and the body-bending frequency increased by 27.09%. This indicated that LFBEP-C1 improved the locomotive ability of C. elegans. The average lifespan of C. elegans reached 13.55 days, and the body length and width of the C. elegans decreased after LFBEP-C1 intake. Additionally, LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels. The expression levels of sbp-1, daf-2, and mdt-15 significantly decreased, while those of daf-16, tph-1, mod-1, and ser-4 significantly increased after LFBEP-C1 intake. Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion: LFBEP-C1 significantly reduced lipid deposition in C. elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development, lifespan, and exercise behavior of C. elegans. In addition, LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein, insulin, and 5-hydroxytryptamine signaling pathways.


Caenorhabditis elegans , Hordeum , Lipid Metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Hordeum/chemistry , Lipid Metabolism/drug effects , Fermentation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Lactobacillus plantarum , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
2.
Risk Manag Healthc Policy ; 17: 1101-1112, 2024.
Article En | MEDLINE | ID: mdl-38707519

Purpose: With China's rapidly aging population and the rising proportion of obese people, an increase in the number of women suffering from urinary incontinence (UI) is to be expected. In order to identify high-risk groups before leakage occurs, we aimed to develop and validate a model to predict the risk of stress UI (SUI) in rural women. Patients and methods: This study included women aged 20-70 years in rural Fujian who participated in an epidemiologic survey of female UI conducted between June and October 2022. Subsequently the data was randomly divided into training and validation sets in a ratio of 7:3. Univariate and multivariate logistic regression analyses were used to identify independent risk factors as well as to further construct a nomogram for risk prediction. Finally, concordance index (C-index), calibration curve and decision curve analysis were applied to evaluate the performance of the predictive models. Results: A total of 5290 rural females were enrolled, of whom 771 (14.6%) had SUI. Age, body mass index (BMI), postmenopausal status, number of vaginal deliveries, vaginal delivery of large infant, constipation and family history of pelvic organ prolapse (POP) and SUI were included in the nomogram. C-index of this prediction model for the training and validation sets was 0.835 (95% confidence interval [CI] = 0.818-0.851) and 0.829 (95% CI = 0.796-0.858), respectively, and the calibration curves and decision analysis curves for both the training and validation sets showed that the model was well-calibrated and had a positive net benefit. Conclusion: This model accurately estimated the SUI risk of rural women in Fujian, which may serve as an effective primary screening tool for the early identification of SUI risk and provide a basis for further implementation of individualized early intervention. Moreover, the model is concise and intuitive, which makes it more operational for rural women with scarce medical resources.

3.
Medicine (Baltimore) ; 103(18): e38038, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701277

The present study aimed to establish an effective prognostic nomogram model based on the Naples prognostic score (NPS) for resectable thoracic esophageal squamous cell carcinoma (ESCC). A total of 277 patients with ESCC, who underwent standard curative esophagectomy and designated as study cohort, were retrospectively analyzed. The patients were divided into different groups, including NPS 0, NPS 1, NPS 2, and NPS 3 or 4 groups, for further analysis, and the results were validated in an external cohort of 122 ESCC patients, who underwent surgery at another cancer center. In our multivariate analysis of the study cohort showed that the tumor-node-metastasis (TNM) stage, systemic inflammation score, and NPS were the independent prognostic factors for the overall survival (OS) and progression-free survival (PFS) durations. In addition, the differential grade was also an independent prognostic factor for the OS in the patients with ESCC after surgery (all P < .05). The area under the curve of receiver operator characteristics for the PFS and OS prediction with systemic inflammation score and NPS were 0.735 (95% confidence interval [CI] 0.676-0.795, P < .001) and 0.835 (95% CI 0.786-0.884, P < .001), and 0.734 (95% CI 0.675-0.793, P < .001) and 0.851 (95% CI 0.805-0.896, P < .001), respectively. The above independent predictors for OS or PFS were all selected in the nomogram model. The concordance indices (C-indices) of the nomogram models for predicting OS and PFS were 0.718 (95% CI 0.681-0.755) and 0.669 (95% CI 0.633-0.705), respectively, which were higher than that of the 7th edition of American Joint Committee on Cancer TNM staging system [C-index 0.598 (95% CI 0.558-0.638) for OS and 0.586 (95% CI 0.546-0.626) for PFS]. The calibration curves for predicting the 5-year OS or PFS showed a good agreement between the prediction by nomogram and actual observation. In the external validation cohort, the nomogram discrimination for OS was better than that of the 7th edition of TNM staging systems [C-index: 0.697 (95% CI 0.639-0.755) vs 0.644 (95% CI 0.589-0.699)]. The calibration curves showed good consistency in predicting the 5-year survival between the actual observation and nomogram predictions. The decision curve also showed a higher potential of the clinical application of predicting the 5-years OS of the proposed nomogram model as compared to that of the 7th edition of TNM staging systems. The preoperative NPS-based nomogram model had a certain potential role for predicting the prognosis of ESCC patients.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophagectomy , Nomograms , Humans , Male , Female , Retrospective Studies , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Middle Aged , Esophageal Neoplasms/surgery , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Prognosis , Esophagectomy/methods , Aged , Neoplasm Staging , Adult
4.
J Med Food ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38770678

Momordica charantia (MC), a member of the Cucurbitaceae family, is well known for its pharmacological activities that exhibit hypoglycemic and hypolipidemic properties. These properties are largely because of its abundant bioactive compounds and phytochemicals. Over the years, numerous studies have confirmed the regulatory effects of MC extract on glycolipid metabolism. However, there is a lack of comprehensive reviews on newly discovered MC-related components, such as insulin receptor-binding protein-19, adMc1, and MC protein-30 and triterpenoids 3ß,7ß,25-trihydroxycucurbita-5,23(E)-dien-19-al, and the role of MC in gut microbiota and bitter taste receptors. This review offers an up-to-date overview of the recently reported chemical compositions of MC, including polysaccharides, saponins, polyphenolics, peptides, and their beneficial effects. It also provides the latest updates on the role of MC in the regulation of gut microbiota and bitter taste receptor signaling pathways. As a result, this review will serve as a theoretical basis for potential applications in the creation or modification of MC-based nutrient supplements.

5.
Risk Manag Healthc Policy ; 17: 1211-1225, 2024.
Article En | MEDLINE | ID: mdl-38742137

Background: Given the importance of diabetic kidney disease (DKD) management, this study aims to explore the knowledge, attitudes, and practices in disease management demonstrated by healthcare workers from the nephrology department. Materials and Methods: This study is a multi-centered cross-sectional study, and adopts snowball sampling, with 530 healthcare workers being recruited to complete a questionnaire covering areas such as demographic characteristics, knowledge, attitude, and practices (KAP) of DKD management. This data was analyzed using descriptive statistics and binary logistics analysis. Results: In this study, 530 healthcare workers were studied, including 94 doctors and 436 nurses. The participants were mainly from general tertiary hospitals in 14 provinces. For Chinese nurse, the results indicate that both poor knowledge level (Odds Ratio (OR) =0.63, 95% Confidence Interval (CI): 0.42-0.94) and having experience in further medical training in nephrology (OR=1.92, 95% CI: 1.20-3.08) are associated with the practice levels. For Chinese doctors, having not experience in further medical training in nephrology (OR=0.36, 95% CI: 0.15-0.83) are associated with their practice levels. Conclusion: In summary, Chinese doctors and nurses in this study showed positive attitudes towards DKD management, but their knowledge and practical skills were lacking. This underscores a notable gap in achieving optimal DKD care. Notably, nurses' knowledge influenced their management practices, and additional nephrology training correlated with better engagement. To improve patient care, enhancing nephrology healthcare professional training and addressing knowledge-practice disparities are recommended.

6.
Gut Microbes ; 16(1): 2351620, 2024.
Article En | MEDLINE | ID: mdl-38738766

Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.


Enterococcus faecium , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Tyramine , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans , Enterococcus faecium/metabolism , Mice , Child , Tyramine/metabolism , Male , Female , Mice, Inbred C57BL , Liver/metabolism , Liver/microbiology , Pediatric Obesity/microbiology , Pediatric Obesity/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
7.
J Biol Chem ; : 107379, 2024 May 16.
Article En | MEDLINE | ID: mdl-38762184

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to single-stranded DNA (ssDNA); however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.

8.
Acta Pharmacol Sin ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38760544

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

9.
Food Funct ; 15(10): 5439-5449, 2024 May 20.
Article En | MEDLINE | ID: mdl-38650575

Barley, rich in bioactive components including dietary fiber, polyphenolic compounds and functional proteins, exhibits health benefits such as regulating glucose and lipid metabolism. Previous studies have found that the content and composition of free phenolic acids in barley may be significantly changed by fermentation with the laboratory patented strain Lactobacillus plantarum dy-1 (L. p dy-1), but the mechanism of enzymatic release of phenolic acid remains to be elucidated. Based on this, this study aimed to identify the key enzyme in L. p dy-1 responsible for releasing the bound phenolic acid and to further analyze its enzymatic properties. The Carbohydrate-Active enZYmes database revealed that L. p dy-1 encodes 7 types of auxiliary enzymes, among which we have identified a membrane sulfatase. The enzyme gene LPMS05445 was heterologous to that expressed in E. coli, and a recombinant strain was induced to produce the target protein and purified. The molecular weight of the purified enzyme was about 59.9 kDa, with 578.21 U mg-1 enzyme activity. The optimal temperature and pH for LPMS05445 expression were 40 °C and 7.0, respectively. Furthermore, enzymatic hydrolysis by LPMS05445 can obviously change the surface microstructure of dietary fiber from barley bran and enhance the release of bound phenolic acid, thereby increasing the free phenolic acid content and improving its physiological function. In conclusion, sulfatase produced by Lactobacillus plantarum dy-1 plays a key role in releasing bound phenolic acids during the fermentation of barley.


Lactobacillus plantarum , Sulfatases , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/genetics , Sulfatases/metabolism , Sulfatases/genetics , Sulfatases/chemistry , Hordeum , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Fermentation , Hydroxybenzoates/metabolism , Hydrogen-Ion Concentration , Escherichia coli/genetics , Temperature , Dietary Fiber/metabolism
10.
Front Endocrinol (Lausanne) ; 15: 1369968, 2024.
Article En | MEDLINE | ID: mdl-38567310

Objective: This study aims to investigate the association between lactate dehydrogenase (LDH) and the risk of diabetic kidney disease (DKD) in patients with type 2 diabetes (T2D). Methods: The study enrolled patients with diagnosis of T2D between 2009 and 2018 from the National Nutrition and Health Examination Survey (NHANES) database. Demographic information, laboratory test, and diagnostic data were collected. Restricted cubic spline (RCS) plots were used to assess the dose-effect relationship between LDH levels and the risk of DKD in patients with T2D. Based on LDH levels, individuals were divided into higher and lower groups using dichotomy, and multivariate logistic regression analysis was conducted to explore the relationship between different LDH levels and the risk of DKD in T2D patients. Stratified analysis was performed to assess the consistency of the result. Results: A total of 4888 patients were included in the study, with 2976 (60.9%) patients without DKD and 1912 (39.1%) patients with DKD. RCS plots showed that the risk of DKD increased with increasing LDH levels. Multifactorial logistic regression analysis revealed that T2D patients with higher LDH levels had a 45% increased risk of DKD compared to those with lower LDH levels (OR=1.45; 95% CI: 1.11-1.89). Furthermore, each standard deviation increase in LDH level was associated with a 24% increase in DKD incidence among T2D patients (OR=1.24; 95% CI: 1.07-1.44). Stratified analysis consistently supported these findings. Conclusions: LDH can serve as a valuable biomarker for screening DKD in patients with T2D.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/etiology , Risk Factors , Nutrition Surveys , L-Lactate Dehydrogenase
11.
Exp Ther Med ; 27(5): 206, 2024 May.
Article En | MEDLINE | ID: mdl-38590578

Essential tremor (ET) and Parkinson's disease (PD) are common chronic movement disorders that can cause a substantial degree of disability. However, the etiology underlying these two conditions remains poorly understood. In the present study, Whole-exome sequencing of peripheral blood samples from the proband and Sanger sequencing of the other 18 family members, and pedigree analysis of four generations of 29 individuals with both ET and PD in a nonconsanguineous Chinese family were performed. Specifically, family members who had available medical information, including historical documentation and physical examination records, were included. A novel c.1909A>T (p.Ser637Cys) missense mutation was identified in the eukaryotic translation initiation factor 4γ1 (EIF4G1) gene as the candidate likely responsible for both conditions. In total, 9 family members exhibited tremor of the bilateral upper limbs and/or head starting from ages of ≥40 years, 3 of whom began showing evidence of PD in their 70s. Eukaryotic initiation factor 4 (eIF4)G1, a component of the translation initiation complex eIF4F, serves as a scaffold protein that interacts with many initiation factors and then binds to the 40S ribosomal subunit. The EIF4G1 (p.Ser637Cys) might inhibit the recruitment of the mRNA to the ribosome. In conclusion, the results from the present study suggested that EIF4G1 may be responsible for the hereditary PD with 'antecedent ET' reported in the family assessed.

12.
J Hazard Mater ; 470: 134214, 2024 May 15.
Article En | MEDLINE | ID: mdl-38603908

Fe(II) regeneration is decisive for highly efficient H2O2-based Fenton-like processes, but the role of cobalt-containing reactive sites in promoting Fe(II) regeneration was overlooked. Herein, a single atom Co-N-C catalyst was employed in Fe(II)/H2O2 system to promote the degradation of diverse organic contaminants. The EPR and quenching experiments indicated Co-N-C significantly enhanced the generation of superoxide species, and accelerated hydroxyl radical generation for pollutant degradation. The electrochemical and surface composition analyses demonstrated the enhanced H2O2 activation and Fe(III)/Fe(II) recycling on the catalyst. Furthermore, in-situ Raman characterization with shell-isolated gold nanoparticles was employed to visualize the interfacial reactive intermediates and their time-resolved interaction. The accumulation of interfacial CoOOH* was confirmed when Co-N-C activated H2O2 alone, but it rapidly transformed into FeOOH* upon Fe(II) addition. Besides, the temporal variation of OOH* intermediates and the relative intensity of Co(III)-O and Co(IV)=O peaks depicted the dynamic interaction of reactive intermediates along the H2O2 consumption. With this basis, we proposed a mechanism of interfacial OOH* mediated Fe(II) regeneration, which overcame the kinetical limitation of Fe(II)/H2O2 system. Therefore, this study provided a primary effort to elucidate the overlooked role of interfacial CoOOH* in the Fenton-like processes, which may inspire the design of more efficient catalysts.

13.
Purinergic Signal ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38676825

P2X7 receptor (P2X7R) plays an important role in modulating inflammation and fibrosis, but information is limited whether Zusanli (ST36) can inhibit inflammation and fibrosis by regulating P2X7R. Isoprenaline at 5 mg/kg was subcutaneously injected to wild-type and P2X7R knockout mice for 7 days, while treatment groups received electroacupuncture (EA) stimulation at ST36 for 7 sessions. Following 7-session treatment, Masson's trichrome staining was performed to assess the fibrosis. Morphology, electrocardiogram, and echocardiography were carried out to evaluate the cardiac function and structure. Western blotting, hematoxylin and eosin staining, immunohistochemistry, and biochemical analysis of inflammatory cytokine and transmission electron microscopy were carried out to characterize the effect of ST36 on inflammation. P2X7R was overexpressed in ISO-treated mice. EA at ST36, but not at non-points, reduced ISO-induced cardiac fibrosis, increases in HW/BW, R+S wave relative to mice in ISO groups. In addition, EA at ST36 downregulated ISO-upregulated P2X7R and NLRP3 in ventricle. Moreover, EA reduced cytokines of IL-1ß, IL-6, and IL-18 in serum, and inhibited foam cell gathering, inflammatory cell infiltration, and autophagy. However, EA at ST36 failed to attenuate the cardiac fibrosis and hypertrophy in P2X7R knockout mice. In conclusion, EA at ST36 attenuated ISO-induced fibrosis possibly via P2X7R.

14.
J Rehabil Med ; 56: jrm21372, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38659375

OBJECTIVE: To investigate the community integration of patients following stroke and determine the predictors of their level of community integration at 1-year follow-up. DESIGN: A multicenter, longitudinal, and observational study. SUBJECTS: Sixty-five inpatients (41 men) with a mean age of 56.9 (standard deviation = 17.0) years, who had their first stroke at least 1 month prior to this study were recruited from 4 rehabilitation inpatient wards in China. METHODS: In the initial assessment, the participants were evaluated using the Community Integration Questionnaire, the Fugl-Meyer Assessment, the Berg Balance Scale, the Modified Barthel Index, the Mini Mental State Examination, and the Modified Ashworth Scale. In the follow-up assessments, which were conducted via telephone no less than 1 year after discharge, the participants were evaluated using the Community Integration Questionnaire and also assessed for other disease-related conditions. RESULTS: The participants' scores on the Community Integration Questionnaire in the follow-up assessment were significantly greater than those at the initial assessment (p < 0.05). In addition, the participants' Community Integration Questionnaire scores in the follow-up assessment were significantly correlated with their ages, numbers of years of education, and Modified Barthel Index, Berg Balance Scale, Mini Mental State Examination scores in the initial assessment (p < 0.05), and marginally significantly correlated with their scores on Fugl-Meyer Assessment in the initial assessment (p = 0.058). The participants' ages, numbers of years of education, and Modified Barthel Index, Berg Balance Scale, Mini Mental State Examination, Fugl-Meyer Assessment of the lower extremity, and Fugl-Meyer Assessment scores in the initial assessment were predictive of their Community Integration Questionnaire scores at follow-up, with coefficients of determination ranging from 0.254 to 0.056 (p < 0.05). CONCLUSIONS: The level of community integration of the participants was generally low, but it was greater at 1-year follow-up than it was initially. Balance function and daily living ability may be key predictors of community integration of patients following stroke.


Community Integration , Stroke Rehabilitation , Stroke , Humans , Male , Middle Aged , Female , Stroke Rehabilitation/methods , Longitudinal Studies , Aged , Stroke/physiopathology , Surveys and Questionnaires , Adult , China , Disability Evaluation , Postural Balance/physiology
15.
J Cancer Res Clin Oncol ; 150(4): 189, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605258

PURPOSE: The synergistic effects of combining arsenic compounds with imatinib against chronic myeloid leukemia (CML) have been established using in vitro data. We conducted a clinical trial to compare the efficacy of the arsenic realgar-indigo naturalis formula (RIF) plus imatinib with that of imatinib monotherapy in patients with newly diagnosed chronic phase CML (CP-CML). METHODS: In this multicenter, randomized, double-blind, phase 3 trial, 191 outpatients with newly diagnosed CP-CML were randomly assigned to receive oral RIF plus imatinib (n = 96) or placebo plus imatinib (n = 95). The primary end point was the major molecular response (MMR) at 6 months. Secondary end points include molecular response 4 (MR4), molecular response 4.5 (MR4.5), progression-free survival (PFS), overall survival (OS), and adverse events. RESULTS: The median follow-up duration was 51 months. Due to the COVID-19 pandemic, the recruitment to this study had to be terminated early, on May 28, 2020. The rates of MMR had no significant statistical difference between combination and imatinib arms at 6 months and any other time during the trial. MR4 rates were similar in both arms. However, the 12-month cumulative rates of MR4.5 in the combination and imatinib arms were 20.8% and 10.5%, respectively (p = 0.043). In core treatment since the 2-year analysis, the frequency of MR4.5 was 55.6% in the combination arm and 38.6% in the imatinib arm (p = 0.063). PFS and OS were similar at five years. The safety profiles were similar and serious adverse events were uncommon in both groups. CONCLUSION: The results of imatinib plus RIF as a first-line treatment of CP-CML compared with imatinib might be more effective for achieving a deeper molecular response (Chinadrugtrials number, CTR20170221).


Antineoplastic Agents , Arsenic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/adverse effects , Arsenic/therapeutic use , Pandemics , Treatment Outcome , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Antineoplastic Agents/adverse effects
16.
Cell Death Differ ; 31(5): 683-696, 2024 May.
Article En | MEDLINE | ID: mdl-38589496

Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.


DNA End-Joining Repair , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Protein Phosphatase 1 , Radiation Tolerance , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Radiation Tolerance/genetics , Prognosis , Cell Line, Tumor , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , Animals , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Mice, Nude , Female , Male , DNA Repair , Mice
17.
J Hazard Mater ; 469: 133942, 2024 May 05.
Article En | MEDLINE | ID: mdl-38452675

The spread of bacteriophage-borne antibiotic resistance genes (ARGs) poses a realistic threat to human health. Nanomaterials, as important emerging pollutants, have potential impacts on ARGs dissemination in aquatic environments. However, little is known about its role in transductive transfer of ARGs mediated by bacteriophage in the presence of microplastics. Therefore, this study comprehensively investigated the influence of silver nanoparticles (AgNPs) on the transfer of bacteriophage-encoded ARGs in planktonic Escherichia coli and microplastic-attached biofilm. AgNPs exposure facilitated the phage transduction in planktonic and microplastic-attached bacteria at ambient concentration of 0.1 mg/L. Biological binding mediated by phage-specific recognition, rather than physical aggregation conducted by hydrophilicity and ζ-potential, dominated the bacterial adhesion of AgNPs. The aggregated AgNPs in turn resulted in elevated oxidative stress and membrane destabilization, which promoted the bacteriophage infection to planktonic bacteria. AgNPs exposure could disrupt colanic acid biosynthesis and then reduce the thickness of biofilm on microplastics, contributing to the transfer of phage-encoded ARGs. Moreover, the roughness of microplastics also affected the performance of AgNPs on the transductive transfer of ARGs in biofilms. This study reveals the compound risks of nanomaterials and microplastics in phage-borne ARGs dissemination and highlights the complexity in various environmental scenarios.


Bacteriophages , Metal Nanoparticles , Humans , Microplastics , Plastics , Silver/toxicity , Bacteriophages/genetics , Plankton/genetics , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Escherichia coli/genetics
18.
Food Funct ; 15(8): 4276-4291, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38526568

Fermentation is an effective method for improving the nutritional quality and functional characteristics of grains. This study investigated changes in the structural, physicochemical, and functional properties of fermented barley dietary fiber (FBDF) exerted by Lactiplantibacillus plantarum dy-1 (Lp. plantarum dy-1) as well as its in vitro fecal fermentation characteristics. Lp. plantarum dy-1 fermentation remarkably changed the structure of FBDF, including the microstructure and monosaccharide components, correlating with improved water or oil retaining and cholesterol adsorption capacities. Additionally, Lp. plantarum dy-1 fermentation significantly (p < 0.05) promoted the release of bound phenolics from 6.24 mg g-1 to 6.93 mg g-1 during in vitro digestion, contributing to the higher antioxidant capacity and inhibitory activity of α-amylase and pancreatic lipase compared with those of raw barley dietary fiber (RBDF). A total of 14 phenolic compounds were detected in the supernatants of digestion and fermentation samples. During colonic fermentation, FBDF significantly increased the production of acetate, propionate, and butyrate (p < 0.05), inhibited the growth of Escherichia-Shigella, and promoted the abundance of SCFA-producing microbiota such as Faecalibacterium and Prevotella_9. In conclusion, Lp. plantarum dy-1 fermentation enhanced the physicochemical properties and in vitro fermentation characteristics of barley dietary fiber, representing a promising bioprocessing technology for modifying barley bran.


Dietary Fiber , Feces , Fermentation , Hordeum , Dietary Fiber/metabolism , Dietary Fiber/analysis , Hordeum/chemistry , Feces/microbiology , Humans , Gastrointestinal Microbiome , Digestion , Antioxidants/metabolism , Fatty Acids, Volatile/metabolism , Lactobacillus plantarum/metabolism , Phenols/metabolism
19.
Microbiol Spectr ; 12(4): e0523022, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38445874

Altered gut microbiota and metabolites are important for non-alcoholic fatty liver disease (NAFLD) in children. We aimed to comprehensively examine the effects of gut metabolites on NAFLD progression. We performed integrative metabolomics (untargeted discovery and targeted validation) analysis of non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and obesity in children. Fecal samples were collected from 75 subjects in the discovery cohort (25 NAFL, 25 NASH, and 25 obese control children) and 145 subjects in an independent validation cohort (53 NAFL, 39 NASH, and 53 obese control children). Among 2,491 metabolites, untargeted metabolomics revealed a complete NAFLD metabolic map containing 318 increased and 123 decreased metabolites. Then, machine learning selected 65 important metabolites that can distinguish the severity of the NAFLD. Furthermore, precision-targeted metabolomics selected 5 novel gut metabolites from 20 typical metabolites. The functionality of candidate metabolites was validated in hepatocyte cell lines. In the end, this study annotated two novel elevated pathogenic metabolites (dodecanoic acid and creatinine) and a relationship between depleted protective gut microbiota (Butyricicoccus and Alistipes), increased inflammation (IL-1ß), lipid metabolism (TG), and liver function (ALT and AST). This study demonstrates the role of novel gut metabolites (dodecanoic acid and creatinine), as the fatty acid metabolism regulator contributing to NAFLD development through its influence on inflammation and liver function. IMPORTANCE: Altered gut microbiota and metabolites are a major cause of non-alcoholic fatty liver disease (NAFLD) in children. This study demonstrated a complete gut metabolic map of children with NAFLD, containing 318 increased and 123 decreased metabolites by untargeted metabolomic. Multiple validation approaches (machine learning and targeted metabolomic) selected five novel gut metabolites for targeted metabolomics, which can distinguish NAFLD status and severity. The gut microbiota (Butyricicoccus and Alistipes) and metabolites (creatinine and dodecanoic acid) were novel biomarkers associated with impaired liver function and inflammation and validated by experiments of hepatocyte cell lines. The data provide a better understanding of the importance of gut microbiota and metabolite alterations in NAFLD, which implies that the altered gut microbiota and metabolites may represent a potential target to prevent NAFLD development.


Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Pediatric Obesity , Child , Humans , Non-alcoholic Fatty Liver Disease/pathology , Creatinine , Pediatric Obesity/metabolism , Pediatric Obesity/pathology , Biomarkers/metabolism , Inflammation/metabolism , Metabolomics , Liver/metabolism
20.
Int J Biol Macromol ; 265(Pt 1): 130649, 2024 Apr.
Article En | MEDLINE | ID: mdl-38453121

Bone Morphogenetic Protein 4 (BMP4) is crucial for bone and cartilage tissue regeneration, essential in medical tissue engineering, cosmetology, and aerospace. However, its cost and degradation susceptibility pose significant clinical challenges. To enhance its osteogenic activity while reducing dosage and administration frequency, we developed a novel long-acting BMP4 delivery system using poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PBVHx) nanoparticles with soybean lecithin-modified BMP4 (sBP-NPs). These nanoparticles promote directed osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through sustained BMP4 release. sBP-NPs exhibited uniform size (100-200 nm) and surface charges, with higher BMP4 entrapment efficiency (82.63 %) compared to controls. After an initial burst release within 24 h, sBP-NPs achieved 80 % cumulative BMP4 release within 20 days, maintaining levels better than control BP-NPs with unmodified BMP4. Co-incubation and nanoparticle uptake experiments confirmed excellent biocompatibility of sBP-NPs, promoting hBMSC differentiation towards osteogenic lineage with increased expression of type I collagen, calcium deposition, and ALP activity (> 20,000 U/g protein) compared to controls. Moreover, hBMSCs treated with sBP-NPs exhibited heightened expression of osteogenic genetic markers, surpassing control groups. Hence, this innovative strategy of sustained BMP4 release from sBP-NPs holds potential to revolutionize bone regeneration in minimally invasive surgery, medical cosmetology or space environments.


Mesenchymal Stem Cells , Nanoparticles , Humans , Osteogenesis/genetics , Bone Morphogenetic Protein 4/genetics , Delayed-Action Preparations/pharmacology , Cell Differentiation , Bone Marrow Cells/metabolism , Cells, Cultured
...