Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
PLoS One ; 19(4): e0301011, 2024.
Article En | MEDLINE | ID: mdl-38640132

BACKGROUND: Recent studies have shown that obesity may contribute to the pathogenesis of benign prostatic hyperplasia (BPH). However, the mechanism of this pathogenesis is not fully understood. METHODS: A prospective case-control study was conducted with 30 obese and 30 nonobese patients with BPH. Prostate tissues were collected and analyzed using ultra performance liquid chromatography ion mobility coupled with quadrupole time-of-flight mass spectrometry (UPLC-IMS-Q-TOF). RESULTS: A total of 17 differential metabolites (3 upregulated and 14 downregulated) were identified between the obese and nonobese patients with BPH. Topological pathway analysis indicated that glycerophospholipid (GP) metabolism was the most important metabolic pathway involved in BPH pathogenesis. Seven metabolites were enriched in the GP metabolic pathway. lysoPC (P16:0/0:0), PE (20:0/20:0), PE (24:1(15Z)/18:0), PC (24:1(15Z)/14:0), PC (15:0/24:0), PE (24:0/18:0), and PC (16:0/18:3(9Z,12Z,15Z)) were all significantly downregulated in the obesity group, and the area under the curve (AUC) of LysoPC (P-16:0/0/0:0) was 0.9922. The inclusion of the seven differential metabolites in a joint prediction model had an AUC of 0.9956. Thus, both LysoPC (P-16:0/0/0:0) alone and the joint prediction model demonstrated good predictive ability for obesity-induced BPH mechanisms. CONCLUSIONS: In conclusion, obese patients with BPH had a unique metabolic profile, and alterations in PE and PC in these patients be associated with the development and progression of BPH.


Prostatic Hyperplasia , Male , Humans , Prostatic Hyperplasia/pathology , Prostate/pathology , Chromatography, High Pressure Liquid , Hyperplasia/pathology , Case-Control Studies , Metabolomics/methods , Obesity/complications , Obesity/pathology
2.
Transl Cancer Res ; 13(2): 579-593, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38482431

Background: The recurrence and mortality rates of bladder cancer are extremely high, and its diagnosis and treatment are global concerns. The mechanism of anoikis is closely related to tumor metastasis. Methods: First, we obtained all the data needed for this study from a public database through a formal operational process. The data were then analyzed by bioinformatics technology. Through the limma package, we screened and obtained 313 anoikis-related genes [false discovery rate (FDR) <0.05, |log fold change (FC) | >0.585]. Then, through univariate independent prognostic analysis, we further screened 146 genes (P<0.05) related to the prognosis of bladder cancer from 313 differential genes. These 146 prognostically relevant differential genes were used for least absolute shrinkage and selection operator (LASSO) regression for further screening to obtain model-related genes and output model formulas. Through the nomogram, we can calculate the survival rate of patients more accurately. The accuracy of the nomogram was also confirmed by calibration curves, independent prognostic analysis, receiver operating characteristic (ROC) curves, decision curve analysis (DCA) curves. We then analysed the sensitivity of immunotherapy in bladder cancer patients with different risk scores via Tumor Immune Dysfunction and Exclusion (TIDE). Results: Through bioinformatics technology and public databases, a prognostic model including 9 anoikis-related genes (KLF12, INHBB, CASP6, TGFBR3, FASN, TPM1, OGT, RAC3, ID4) was obtained. Integrating risk scores with clinical information, we obtained a nomogram that can accurately predict patient survival. By querying the immunohistochemical results of the Human Protein Atlas database, two of the nine model-related genes (FASN, RAC3) have the value of further research and are expected to become new biomarkers to assist the diagnosis and treatment of bladder cancer. Through immune-related analysis, we found that patients in the low-risk group appeared to be more suitable for immunotherapy, while drug sensitivity analysis showed that bladder cancer patients in the high-risk group were more sensitive to common chemotherapy drugs. Conclusions: In this study, a prognostic model that can accurately predict the prognosis of patients with bladder cancer was constructed. FASN and RAC3 are expected to become a new biomarker for the diagnosis and treatment of bladder cancer.

3.
Transl Cancer Res ; 13(2): 819-832, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38482447

Background: Clear cell renal cell carcinoma (ccRCC) is a heterogeneous tumor that accounts for a large proportion of kidney cancer, It is prone to recurrence and metastasis, and has a high mortality rate. Although mitophagy is important for metastasis and the recurrence of various tumors, its effect on renal clear cell carcinoma is poorly understood. Methods: Mitophagy-related genes were obtained through the GeneCards database. We normalised the data from different sources by removing the batch effect. Next, we conducted a preliminary screening of mitophagy-related genes and obtained prognosis-related genes from differentially expressed genes. We constructed a prognostic model using least absolute shrinkage and selection operator (LASSO) regression with data from The Cancer Genome Atlas (TCGA) and GSE29609 datasets and validated it internally. International Cancer Genome Consortium (ICGC) and E-MTAB-1980 cohorts also provided double external validation. In addition, we combined multi-omics and single-cell data to comprehensively analyse mitophagy-related gene model signature (MRGMS). Combined with the mitophagy-related gene model (MRGM) score, we constructed a nomogram. Finally, we performed pathway enrichment analysis using a variety of methods. Results: Multiomics and single-cell data analysis showed that the MRGMS is important for patients with ccRCC and is expected to become a new biomarker. The construction of a nomogram was conducive to accurately predicting patient survival. Conclusions: Mitophagy-related genes are important for predicting the prognosis of ccRCC and are conducive to the development of more personalised treatment plans for patients.

4.
Transl Cancer Res ; 13(1): 217-230, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38410221

Background: Clear cell renal cell carcinoma (ccRCC) is a malignant kidney tumour and its progression is associated with the renin secretion pathway, so this study aimed to develop a prognostic model based on renin secretion pathway-related genes. Methods: First, 453 renin secretion pathway-related genes were acquired [|log fold change (FC)| >1.5, false discovery rate (FDR) <0.05] from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The data were combined and further screened for 188 genes associated with ccRCC prognosis (P<0.05) by univariate independent prognostic analysis. These genes were subjected to least absolute shrinkage and selection operator regression to identify potential prognostic genes to construct the prognostic model. The stability of the model was externally validated. Combined risk scores and clinical information were used to create nomograms to accurately reflect patient survival. The model-related genes were further mined for subsequent analysis. Results: A prognostic model of six renin secretion pathway genes (IGFBP3, PLAUR, CHKB-CPT1B, HOXA13, CDH13, and CDC20) was developed. Its reliability in predicting disease prognosis was confirmed by survival analysis, receiver operating characteristic (ROC) curve analysis and a risk curve. The nomogram and calibration curve showed good accuracy. The immune-related analyses revealed that the low-risk group would benefit more from immunotherapy. Conclusions: The prognostic model of ccRCC based on six renin secretion pathway-related genes can be used to guide the precise treatment of ccRCC patients.

5.
Front Genet ; 14: 1287613, 2023.
Article En | MEDLINE | ID: mdl-38028597

Background: Diabetic nephropathy (DN) is the most common complication of diabetes, and its pathogenesis is complex involving a variety of programmed cell death, inflammatory responses, and autophagy mechanisms. Disulfidptosis is a newly discovered mechanism of cell death. There are little studies about the role of disulfidptosis on DN. Methods: First, we obtained the data required for this study from the GeneCards database, the Nephroseq v5 database, and the GEO database. Through differential analysis, we obtained differential disulfidptosis-related genes. At the same time, through WGCNA analysis, we obtained key module genes in DN patients. The obtained intersecting genes were further screened by Lasso as well as SVM-RFE. By intersecting the results of the two, we ended up with a key gene for diabetic nephropathy. The diagnostic performance and expression of key genes were verified by the GSE30528, GSE30529, GSE96804, and Nephroseq v5 datasets. Using clinical information from the Nephroseq v5 database, we investigated the correlation between the expression of key genes and estimated glomerular filtration rate (eGFR) and serum creatinine content. Next, we constructed a nomogram and analyzed the immune microenvironment of patients with DN. The identification of subtypes facilitates individualized treatment of patients with DN. Results: We obtained 91 differential disulfidptosis-related genes. Through WGCNA analysis, we obtained 39 key module genes in DN patients. Taking the intersection of the two, we preliminarily screened 20 genes characteristic of DN. Through correlation analysis, we found that these 20 genes are positively correlated with each other. Further screening by Lasso and SVM-RFE algorithms and intersecting the results of the two, we identified CXCL6, CD48, C1QB, and COL6A3 as key genes in DN. Clinical correlation analysis found that the expression levels of key genes were closely related to eGFR. Immune cell infiltration is higher in samples from patients with DN than in normal samples. Conclusion: We identified and validated 4 DN key genes from disulfidptosis-related genes that CXCL6, CD48, C1QB, and COL6A3 may be key genes that promote the onset of DN and are closely related to the eGFR and immune cell infiltrated in the kidney tissue.

6.
Transl Cancer Res ; 12(10): 2629-2645, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37969384

Background: Clear cell renal cell carcinoma (ccRCC) is the largest subtype of kidney tumour, with inflammatory responses characterising all stages of the tumour. Establishing the relationship between the genes related to inflammatory responses and ccRCC may help the diagnosis and treatment of patients with ccRCC. Methods: First, we obtained the data for this study from a public database. After differential analysis and Cox regression analysis, we obtained the genes for the establishment of a prognostic model for ccRCC. As we used data from multiple databases, we standardized all the data using the surrogate variable analysis (SVA) package to make the data from different sources comparable. Next, we used a least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model of genes related to inflammation. The data used for modelling and internal validation came from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) series (GSE29609) databases. ccRCC data from the International Cancer Genome Consortium (ICGC) database were used for external validation. Tumour data from the E-MTAB-1980 cohort were used for external validation. The GSE40453 and GSE53757 datasets were used to verify the differential expression of inflammation-related gene model signatures (IRGMS). The immunohistochemistry of IRGMS was queried through the Human Protein Atlas (HPA) database. After the adequate validation of the IRGM, we further explored its application by constructing nomograms, pathway enrichment analysis, immunocorrelation analysis, drug susceptibility analysis, and subtype identification. Results: The IRGM can robustly predict the prognosis of samples from patients with ccRCC from different databases. The verification results show that nomogram can accurately predict the survival rate of patients. Pathway enrichment analysis showed that patients in the high-risk (HR) group were associated with a variety of tumorigenesis biological processes. Immune-related analysis and drug susceptibility analysis suggested that patients with higher IRGM scores had more treatment options. Conclusions: The IRGMS can effectively predict the prognosis of ccRCC. Patients with higher IRGM scores may be better candidates for treatment with immune checkpoint inhibitors and have more chemotherapy options.

7.
Crit Rev Eukaryot Gene Expr ; 33(6): 73-86, 2023.
Article En | MEDLINE | ID: mdl-37522546

As a newly discovered mechanism of cell death, disulfidptosis is expected to help diagnose and treat bladder cancer patients. First, data obtained from public databases were analyzed using bioinformatics techniques. SVA packages were used to combine data from different databases to remove batch effects. Then, the differential analysis and COX regression analysis of ten disulfidptosis-related genes identified four prognostically relevant differentially expressed genes which were subjected to Lasso regression for further screening to obtain model-related genes and output model formulas. The predictive power of the prognostic model was verified and the immunohistochemistry of model-related genes was verified in the HPA database. Pathway enrichment analysis was performed to identify the mechanism of bladder cancer development and progression. The tumor microenvironment and immune cell infiltration of bladder cancer patients with different risk scores were analyzed to personalize treatment. Then, information from the IMvigor210 database was used to predict the responsiveness of different risk patients to immunotherapy. The oncoPredict package was used to predict the sensitivity of patients at different risk to chemotherapy drugs, and its results have some reference value for guiding clinical use. After confirming that our model could reliably predict the prognosis of bladder cancer patients, the risk scores were combined with clinical information to create a nomogram to accurately calculate the patient survival rate. A prognostic model containing three disulfidptosis-related genes (NDUFA11, RPN1, SLC3A2) was constructed. The functional enrichment analysis and immune-related analysis indicated patients in the high-risk group were candidates for immunotherapy. The results of drug susceptibility analysis can guide more accurate treatment for bladder cancer patients and the nomogram can accurately predict patient survival. NDUFA11, RPN1, and SLC3A2 are potential novel biomarkers for the diagnosis and treatment of bladder cancer. The comprehensive analysis of tumor immune profiles indicated that patients in the high-risk group are expected to benefit from immunotherapy.


Immunotherapy , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Computational Biology , Databases, Factual , Tumor Microenvironment/genetics
8.
Ann Bot ; 131(3): 503-519, 2023 04 04.
Article En | MEDLINE | ID: mdl-36655618

BACKGROUND AND AIMS: Physiological and morphological traits play essential roles in wheat (Triticum aestivum) growth and development. In particular, photosynthesis is a limitation to yield. Increasing photosynthesis in wheat has been identified as an important strategy to increase yield. However, the genotypic variations and the genomic regions governing morphological, architectural and photosynthesis traits remain unexplored. METHODS: Here, we conducted a large-scale investigation of the phenological, physiological, plant architectural and yield-related traits, involving 32 traits for 166 wheat lines during 2018-2020 in four environments, and performed a genome-wide association study with wheat 90K and 660K single nucleotide polymorphism (SNP) arrays. KEY RESULTS: These traits exhibited considerable genotypic variations in the wheat diversity panel. Higher yield was associated with higher net photosynthetic rate (r = 0.41, P < 0.01), thousand-grain weight (r = 0.36, P < 0.01) and truncated and lanceolate shape, but shorter plant height (r = -0.63, P < 0.01), flag leaf angle (r = -0.49, P < 0.01) and spike number per square metre (r = -0.22, P < 0.01). Genome-wide association mapping discovered 1236 significant stable loci detected in the four environments among the 32 traits using SNP markers. Trait values have a cumulative effect as the number of the favourable alleles increases, and significant progress has been made in determining phenotypic values and favourable alleles over the years. Eleven elite cultivars and 14 traits associated with grain yield per plot (GY) were identified as potential parental lines and as target traits to develop high-yielding cultivars. CONCLUSIONS: This study provides new insights into the phenotypic and genetic elucidation of physiological and morphological traits in wheat and their associations with GY, paving the way for discovering their underlying gene control and for developing enhanced ideotypes in wheat breeding.


Genome-Wide Association Study , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Triticum/genetics , Phenotype , Edible Grain/genetics
9.
Plant Cell Environ ; 46(3): 780-795, 2023 03.
Article En | MEDLINE | ID: mdl-36517924

Genetic markers can be linked with eco-physiological crop models to accurately predict genotype performance and individual markers' contributions in target environments, exploring interactions between genotype and environment. Here, wheat (Triticum aestivum L.) yield was dissected into seven traits corresponding to cultivar genetic coefficients in an eco-physiological model. Loci for these traits were discovered through the genome-wide association studies (GWAS). The cultivar genetic coefficients were derived from the loci using multiple linear regression or random forest, building a marker-based eco-physiological model. It is then applied to simulate wheat yields and design virtual ideotypes. The results indicated that the loci identified through GWAS explained 46%-75% variations in cultivar genetic coefficients. Using the marker-based model, the normalized root mean square error (nRMSE) between the simulated yield and observed yield was 13.95% by multiple linear regression and 13.62% by random forest. The nRMSE between the simulated and observed maturity dates was 1.24% by multiple linear regression and 1.11% by random forest, respectively. Structural equation modelling indicated that variations in grain yield could be well explained by cultivar genetic coefficients and phenological data. In addition, 24 pleiotropic loci in this study were detected on 15 chromosomes. More significant loci were detected by the model-based dissection method than considering yield per se. Ideotypes were identified by higher yield and more favourable alleles of cultivar genetic traits. This study proposes a genotype-to-phenotype approach and demonstrates novel ideas and tools to support the effective breeding of new cultivars with high yield through pyramiding favourable alleles and designing crop ideotypes.


Genome-Wide Association Study , Triticum , Genetic Markers , Triticum/genetics , Genome-Wide Association Study/methods , Linkage Disequilibrium , Alleles , Quantitative Trait Loci/genetics , Phenotype , Genotype , Polymorphism, Single Nucleotide
10.
Precis Agric ; 24(1): 187-212, 2023.
Article En | MEDLINE | ID: mdl-35967193

Early prediction of grain yield helps scientists to make better breeding decisions for wheat. Use of machine learning (ML) methods for fusion of unmanned aerial vehicle (UAV)-based multi-sensor data can improve the prediction accuracy of crop yield. For this, five ML algorithms including Cubist, support vector machine (SVM), deep neural network (DNN), ridge regression (RR) and random forest (RF) were used for multi-sensor data fusion and ensemble learning for grain yield prediction in wheat. A set of thirty wheat cultivars and breeding lines were grown under three irrigation treatments i.e., light, moderate and high irrigation treatments to evaluate the yield prediction capabilities of a low-cost multi-sensor (RGB, multi-spectral and thermal infrared) UAV platform. Multi-sensor data fusion-based yield prediction showed higher accuracy compared to individual-sensor data in each ML model. The coefficient of determination (R 2) values for Cubist, SVM, DNN and RR models regarding grain yield prediction were observed from 0.527 to 0.670. Moreover, the results of ensemble learning through integrating the above models illustrated further increase in accuracy. The predictions of ensemble learning showed high R 2 values up to 0.692, which was higher as compared to individual ML models across the multi-sensor data. Root mean square error (RMSE), residual prediction deviation (RPD) and ratio of prediction performance to inter-quartile range (RPIQ) were calculated to be 0.916 t ha-1, 1.771 and 2.602, respectively. The results proved that low altitude UAV-based multi-sensor data can be used for early grain yield prediction using data fusion and an ensemble learning framework with high accuracy. This high-throughput phenotyping approach is valuable for improving the efficiency of selection in large breeding activities. Supplementary Information: The online version contains supplementary material available at 10.1007/s11119-022-09938-8.

11.
Plant Methods ; 18(1): 119, 2022 Nov 08.
Article En | MEDLINE | ID: mdl-36344997

BACKGROUND: Wheat is an important food crop globally, and timely prediction of wheat yield in breeding efforts can improve selection efficiency. Traditional yield prediction method based on secondary traits is time-consuming, costly, and destructive. It is urgent to develop innovative methods to improve selection efficiency and accelerate genetic gains in the breeding cycle. RESULTS: Crop yield prediction using remote sensing has gained popularity in recent years. This paper proposed a novel ensemble feature selection (EFS) method to improve yield prediction from hyperspectral data. For this, 207 wheat cultivars and breeding lines were grown under full and limited irrigation treatments respectively, and their canopy hyperspectral reflectance was measured at the flowering, early grain filling (EGF), mid grain filling (MGF), and late grain filling (LGF) stages. Then, 115 vegetation indices were extracted from the hyperspectral reflectance and combined with four feature selection methods, i.e., mean decrease impurity (MDI), Boruta, FeaLect, and RReliefF to train deep neural network (DNN) models for yield prediction. Next, a learning framework was developed by combining the predicted values of the selected and the full features using multiple linear regression (MLR). The results show that the selected features contributed to higher yield prediction accuracy than the full features, and the MDI method performed well across growth stages, with a mean R2 ranging from 0.634 to 0.666 (mean RMSE = 0.926-0.967 t ha-1). Also, the proposed EFS method outperformed all the individual feature selection methods across growth stages, with a mean R2 ranging from 0.648 to 0.679 (mean RMSE = 0.911-0.950 t ha-1). CONCLUSIONS: The proposed EFS method can improve grain yield prediction from hyperspectral data and can be used to assist wheat breeders in earlier decision-making.

12.
Plant J ; 112(2): 565-582, 2022 10.
Article En | MEDLINE | ID: mdl-36004546

Wheat (Triticum aestivum L.) radiation use efficiency (RUE) must be raised through crop breeding to further increase the yield potential, as the harvest index is now close to its theoretical limit. Field experiments including 209 wheat cultivars which have been widely cultivated in China since the 1940s were conducted in two growing seasons (2018-2019 and 2019-2020) to evaluate the variations of phenological, physiological, plant architectural, and yield-related traits and their contributions to RUE and to identify limiting factors for wheat yield potential. The average annual genetic gain in grain yield was 0.60% (or 45.32 kg ha-1 year-1 ; R2 = 0.44, P < 0.01), mainly attributed to the gain in RUE (r = 0.85, P < 0.01). The net photosynthetic rates were positively and closely correlated with grain RUE and grain yield, suggesting source as a limiting factor to future yield gains. Thirty-four cultivars were identified, exhibiting not only high RUE, but also traits contributing to high RUE and 11 other critical traits - of known genetic basis - as potential parents for breeding to improve yield and RUE. Our findings reveal wheat traits and the associated loci conferring RUE, which are valuable for facilitating marker-assisted breeding to improve wheat RUE and yield potential.


Plant Breeding , Triticum , Triticum/genetics , Phenotype , Edible Grain/genetics , Photosynthesis/genetics
13.
Front Genet ; 13: 1087246, 2022.
Article En | MEDLINE | ID: mdl-36685927

Background: Bladder cancer ranks among the top three in the urology field for both morbidity and mortality. Telomere maintenance-related genes are closely related to the development and progression of bladder cancer, and approximately 60%-80% of mutated telomere maintenance genes can usually be found in patients with bladder cancer. Methods: Telomere maintenance-related gene expression profiles were obtained through limma R packages. Of the 359 differential genes screened, 17 prognostically relevant ones were obtained by univariate independent prognostic analysis, and then analysed by LASSO regression. The best result was selected to output the model formula, and 11 model-related genes were obtained. The TCGA cohort was used as the internal group and the GEO dataset as the external group, to externally validate the model. Then, the HPA database was used to query the immunohistochemistry of the 11 model genes. Integrating model scoring with clinical information, we drew a nomogram. Concomitantly, we conducted an in-depth analysis of the immune profile and drug sensitivity of the bladder cancer. Referring to the matrix heatmap, delta area plot, consistency cumulative distribution function plot, and tracking plot, we further divided the sample into two subtypes and delved into both. Results: Using bioinformatics, we obtained a prognostic model of telomere maintenance-related genes. Through verification with the internal and the external groups, we believe that the model can steadily predict the survival of patients with bladder cancer. Through the HPA database, we found that three genes, namely ABCC9, AHNAK, and DIP2C, had low expression in patients with tumours, and eight other genes-PLOD1, SLC3A2, RUNX2, RAD9A, CHMP4C, DARS2, CLIC3, and POU5F1-were highly expressed in patients with tumours. The model had accurate predictive power for populations with different clinicopathological features. Through the nomogram, we could easily assess the survival rate of patients. Clinicians can formulate targeted diagnosis and treatment plans for patients based on the prediction results of patient survival, immunoassays, and drug susceptibility analysis. Different subtypes help to further subdivide patients for better treatment purposes. Conclusion: According to the results obtained by the nomogram in this study, combined with the results of patient immune-analysis and drug susceptibility analysis, clinicians can formulate diagnosis and personalized treatment plans for patients. Different subtypes can be used to further subdivide the patient for a more precise treatment plan.

14.
Plant Physiol ; 187(4): 2623-2636, 2021 12 04.
Article En | MEDLINE | ID: mdl-34601616

Environmental stresses from climate change can alter source-sink relations during plant maturation, leading to premature senescence and decreased yields. Elucidating the genetic control of natural variations for senescence in wheat (Triticum aestivum) can be accelerated using recent developments in unmanned aerial vehicle (UAV)-based imaging techniques. Here, we describe the use of UAVs to quantify senescence in wheat using vegetative indices (VIs) derived from multispectral images. We detected senescence with high heritability, as well as its impact on grain yield (GY), in a doubled-haploid population and parent cultivars at various growth time points (TPs) after anthesis in the field. Selecting for slow senescence using a combination of different UAV-based VIs was more effective than using a single ground-based vegetation index. We identified 28 quantitative trait loci (QTL) for vegetative growth, senescence, and GY using a 660K single-nucleotide polymorphism array. Seventeen of these new QTL for VIs from UAV-based multispectral imaging were mapped on chromosomes 2B, 3A, 3D, 5A, 5D, 5B, and 6D; these QTL have not been reported previously using conventional phenotyping methods. This integrated approach allowed us to identify an important, previously unreported, senescence-related locus on chromosome 5D that showed high phenotypic variation (up to 18.1%) for all UAV-based VIs at all TPs during grain filling. This QTL was validated for slow senescence by developing kompetitive allele-specific PCR markers in a natural population. Our results suggest that UAV-based high-throughput phenotyping is advantageous for temporal assessment of the genetics underlying for senescence in wheat.


Chromosome Mapping , Crops, Agricultural/physiology , Quantitative Trait Loci , Spectrum Analysis/methods , Triticum/physiology , Unmanned Aerial Devices , Plant Senescence , Spectrum Analysis/instrumentation
15.
Foods ; 10(5)2021 May 11.
Article En | MEDLINE | ID: mdl-34064879

The simultaneous improvement of protein content (PC) and grain yield (GY) in bread wheat (Triticum aestivum L.) under low-input management enables the development of resource-use efficient varieties that combine high grain yield potential with desirable end-use quality. However, the complex mechanisms of genotype, management, and growing season, and the negative correlation between PC and GY complicate the simultaneous improvement of PC and GY under low-input management. To identify favorable genotypes for PC and GY under low-input management, this study used 209 wheat varieties, including strong gluten, medium-strong gluten, medium gluten, weak gluten, winter, semi-winter, weak-spring, and spring types, which has been promoted from the 1980s to the 2010s. Allelic genotyping, performed using kompetitive allele-specific polymerase chain reaction (KASP) technology, found 69 types of GY-PC allelic combinations in the tested materials. Field trials were conducted with two growing season treatments (2018-2019 and 2019-2020) and two management treatments (conventional management and low-input management). Multi-environment analysis of variance showed that genotype, management, and growing season had extremely substantial effects on wheat GY and PC, respectively, and the interaction of management × growing season also had extremely significant effects on wheat GY. According to the three-sigma rule of the normal distribution, the GY of wheat varieties Liangxing 66 and Xinmai 18 were stable among the top 15.87% of all tested materials with high GY, and their PC reached mean levels under low-input management, but also stably expressed high GY and high PC under conventional management, which represents a great development potential. These varieties can be used as cultivars of interest for breeding because TaSus1-7A, TaSus1-7B, TaGW2-6A, and TaGW2-6B, which are related to GY, and Glu-B3, which is related to PC, carry favorable alleles, among which Hap-1/2, the allele of TaSus1-7A, and Glu-B3b/d/g/i, the allele of Glu-B3, can be stably expressed. Our results may be used to facilitate the development of high-yielding and high-quality wheat varieties under low-input management, which is critical for sustainable food and nutrition security.

16.
BMC Genomics ; 22(1): 174, 2021 Mar 11.
Article En | MEDLINE | ID: mdl-33706703

BACKGROUND: Phosphorus (P) is an important in ensuring plant morphogenesis and grain quality, therefore an efficient root system is crucial for P-uptake. Identification of useful loci for root morphological and P uptake related traits at seedling stage is important for wheat breeding. The aims of this study were to evaluate phenotypic diversity of Yangmai 16/Zhongmai 895 derived doubled haploid (DH) population for root system architecture (RSA) and biomass related traits (BRT) in different P treatments at seedling stage using hydroponic culture, and to identify QTL using 660 K SNP array based high-density genetic map. RESULTS: All traits showed significant variations among the DH lines with high heritabilities (0.76 to 0.91) and high correlations (r = 0.59 to 0.98) among all traits. Inclusive composite interval mapping (ICIM) identified 34 QTL with 4.64-20.41% of the phenotypic variances individually, and the log of odds (LOD) values ranging from 2.59 to 10.43. Seven QTL clusters (C1 to C7) were mapped on chromosomes 3DL, 4BS, 4DS, 6BL, 7AS, 7AL and 7BL, cluster C5 on chromosome 7AS (AX-109955164 - AX-109445593) with pleiotropic effect played key role in modulating root length (RL), root tips number (RTN) and root surface area (ROSA) under low P condition, with the favorable allele from Zhongmai 895. CONCLUSIONS: This study carried out an imaging pipeline-based rapid phenotyping of RSA and BRT traits in hydroponic culture. It is an efficient approach for screening of large populations under different nutrient conditions. Four QTL on chromosomes 6BL (2) and 7AL (2) identified in low P treatment showed positive additive effects contributed by Zhongmai 895, indicating that Zhongmai 895 could be used as parent for P-deficient breeding. The most stable QTL QRRS.caas-4DS for ratio of root to shoot dry weight (RRS) harbored the stable genetic region with high phenotypic effect, and QTL clusters on 7A might be used for speedy selection of genotypes for P-uptake. SNPs closely linked to QTLs and clusters could be used to improve nutrient-use efficiency.


Phosphorus , Triticum , Chromosome Mapping , Hydroponics , Phenotype , Plant Breeding , Quantitative Trait Loci , Triticum/genetics
17.
Front Plant Sci ; 12: 730181, 2021.
Article En | MEDLINE | ID: mdl-34987529

Crop breeding programs generally perform early field assessments of candidate selection based on primary traits such as grain yield (GY). The traditional methods of yield assessment are costly, inefficient, and considered a bottleneck in modern precision agriculture. Recent advances in an unmanned aerial vehicle (UAV) and development of sensors have opened a new avenue for data acquisition cost-effectively and rapidly. We evaluated UAV-based multispectral and thermal images for in-season GY prediction using 30 winter wheat genotypes under 3 water treatments. For this, multispectral vegetation indices (VIs) and normalized relative canopy temperature (NRCT) were calculated and selected by the gray relational analysis (GRA) at each growth stage, i.e., jointing, booting, heading, flowering, grain filling, and maturity to reduce the data dimension. The elastic net regression (ENR) was developed by using selected features as input variables for yield prediction, whereas the entropy weight fusion (EWF) method was used to combine the predicted GY values from multiple growth stages. In our results, the fusion of dual-sensor data showed high yield prediction accuracy [coefficient of determination (R 2) = 0.527-0.667] compared to using a single multispectral sensor (R 2 = 0.130-0.461). Results showed that the grain filling stage was the optimal stage to predict GY with R 2 = 0.667, root mean square error (RMSE) = 0.881 t ha-1, relative root-mean-square error (RRMSE) = 15.2%, and mean absolute error (MAE) = 0.721 t ha-1. The EWF model outperformed at all the individual growth stages with R 2 varying from 0.677 to 0.729. The best prediction result (R 2 = 0.729, RMSE = 0.831 t ha-1, RRMSE = 14.3%, and MAE = 0.684 t ha-1) was achieved through combining the predicted values of all growth stages. This study suggests that the fusion of UAV-based multispectral and thermal IR data within an ENR-EWF framework can provide a precise and robust prediction of wheat yield.

18.
Front Plant Sci ; 11: 927, 2020.
Article En | MEDLINE | ID: mdl-32676089

Unmanned aerial vehicle (UAV) based remote sensing is a promising approach for non-destructive and high-throughput assessment of crop water and nitrogen (N) efficiencies. In this study, UAV was used to evaluate two field trials using four water (T0 = 0 mm, T1 = 80 mm, T2 = 120 mm, and T3 = 160 mm), and four N (T0 = 0, T1 = 120 kg ha-1, T2 = 180 kg ha-1, and T3 = 240 kg ha-1) treatments, respectively, conducted on three wheat genotypes at two locations. Ground-based destructive data of water and N indictors such as biomass and N contents were also measured to validate the aerial surveillance results. Multispectral traits including red normalized difference vegetation index (RNDVI), green normalized difference vegetation index (GNDVI), normalized difference red-edge index (NDRE), red-edge chlorophyll index (RECI) and normalized green red difference index (NGRDI) were recorded using UAV as reliable replacement of destructive measurements by showing high r values up to 0.90. NGRDI was identified as the most efficient non-destructive indicator through strong prediction values ranged from R 2 = 0.69 to 0.89 for water use efficiencies (WUE) calculated from biomass (WUE.BM), and R 2 = 0.80 to 0.86 from grain yield (WUE.GY). RNDVI was better in predicting the phenotypic variations for N use efficiency calculated from nitrogen contents of plant samples (NUE.NC) with high R 2 values ranging from 0.72 to 0.94, while NDRE was consistent in predicting both NUE.NC and NUE.GY by 0.73 to 0.84 with low root mean square errors. UAV-based remote sensing demonstrates that treatment T2 in both water 120 mm and N 180 kg ha-1 supply trials was most appropriate dosages for optimum uptake of water and N with high GY. Among three cultivars, Zhongmai 895 was highly efficient in WUE and NUE across the water and N treatments. Conclusively, UAV can be used to predict time-series WUE and NUE across the season for selection of elite genotypes, and to monitor crop efficiency under varying N and water dosages.

19.
Theor Appl Genet ; 133(10): 2897-2914, 2020 Oct.
Article En | MEDLINE | ID: mdl-32594265

KEY MESSAGE: GWAS identified 36 potentially new loci for wheat stem water-soluble carbohydrate (WSC) contents and 13 pleiotropic loci affecting WSC and thousand-kernel weight. Five KASP markers were developed and validated. Water-soluble carbohydrates (WSC) reserved in stems contribute significantly to grain yield (GY) in wheat. However, knowledge of the genetic architecture underlying stem WSC content (SWSCC) is limited. In the present study, 166 diverse wheat accessions from the Yellow and Huai Valleys Winter Wheat Zone of China and five other countries were grown in four well-watered environments. SWSCC at 10 days post-anthesis (10DPA), 20DPA and 30DPA, referred as WSC10, WSC20 and WSC30, respectively, and thousand-kernel weight (TKW) were assessed. Correlation analysis showed that TKW was significantly and positively correlated with WSC10 and WSC20. Genome-wide association study was performed on SWSCC and TKW with 373,106 markers from the wheat 660 K and 90 K SNP arrays. Totally, 62 stable loci were detected for SWSCC, with 36, 24 and 19 loci for WSC10, WSC20 and WSC30, respectively; among these, 36 are potentially new, 16 affected SWSCC at two or three time-points, and 13 showed pleiotropic effects on both SWSCC and TKW. Linear regression showed clear cumulative effects of favorable alleles for increasing SWSCC and TKW. Genetic gain analyses indicated that pyramiding favorable alleles of SWSCC had simultaneously improved TKW. Kompetitive allele-specific PCR markers for five pleiotropic loci associated with both SWSCC and TKW were developed and validated. This study provided a genome-wide landscape of the genetic architecture of SWSCC, gave a perspective for understanding the relationship between WSC and GY and explored the theoretical basis for co-improvement of WSC and GY. It also provided valuable loci and markers for future breeding.


Carbohydrates/analysis , Triticum/genetics , Alleles , Gene Frequency , Genetic Association Studies , Genetic Markers , Genetic Pleiotropy , Genotype , Linkage Disequilibrium , Phenotype , Physical Chromosome Mapping , Plant Stems/chemistry , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Water
20.
PLoS One ; 15(5): e0233056, 2020.
Article En | MEDLINE | ID: mdl-32396546

The content and composition of seed storage proteins is largely responsible for wheat end-use quality. They mainly consist of polymeric glutenins and monomeric gliadins. According to their electrophoretic mobility, gliadins and glutenins are subdivided into several fractions. Glutenins are classified as high molecular weight or low molecular weight glutenin subunits (HMW-GSs and LMW-GSs, respectively). LMW-GSs are encoded by multigene families located at the orthologous Glu-3 loci. We designed a set of 16 single-nucleotide polymorphism (SNP) markers that are able to detect SDS-PAGE alleles at the Glu-A3 and Glu-B3 loci. The SNP markers captured the diversity of alleles in 88 international reference lines and 27 Mexican cultivars, when compared to SDS-PAGE and STS markers, however, showed a slightly larger percent of multiple alleles, mainly for Glu-B3. SNP markers were then used to determine the Glu-1 and Glu-3 allele composition in 54 CIMMYT historical lines and demonstrated to be useful tool for breeding programs to improve wheat end product properties.


Glutens/genetics , Triticum/genetics , Alleles , Base Sequence , Bread , DNA, Plant/genetics , Genes, Plant , Genetic Markers , Glutens/chemistry , Molecular Weight , Plant Breeding , Polymorphism, Single Nucleotide , Protein Subunits , Sequence Tagged Sites
...