Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Adv Sci (Weinh) ; : e2401716, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840455

The demand for miniaturized and integrated multifunctional devices drives the progression of high-performance infrared photodetectors for diverse applications, including remote sensing, air defense, and communications, among others. Nonetheless, infrared photodetectors that rely solely on single low-dimensional materials often face challenges due to the limited absorption cross-section and suboptimal carrier mobility, which can impair sensitivity and prolong response times. Here, through experimental validation is demonstrated, precise control over energy band alignment in a type-II van der Waals heterojunction, comprising vertically stacked 2D Ta2NiSe5 and the topological insulator Bi2Se3, where the configuration enables polarization-sensitive, wide-spectral-range photodetection. Experimental evaluations at room temperature reveal that the device exhibits a self-powered responsivity of 0.48 A·W-1, a specific directivity of 3.8 × 1011 cm·Hz1/2·W-1, a response time of 151 µs, and a polarization ratio of 2.83. The stable and rapid photoresponse of the device underpins the utility in infrared-coded communication and dual-channel imaging, showing the substantial potential of the detector. These findings articulate a systematic approach to developing miniaturized, multifunctional room-temperature infrared detectors with superior performance metrics and enhanced capabilities for multi-information acquisition.

2.
J Phys Chem A ; 128(21): 4378-4390, 2024 May 30.
Article En | MEDLINE | ID: mdl-38759697

Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that used enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limited the use of high-precision potential energy functions for simulations. To address this issue, we presented a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allowed for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a carbonyl insertion reaction catalyzed by manganese.

3.
J Colloid Interface Sci ; 671: 477-485, 2024 Oct.
Article En | MEDLINE | ID: mdl-38815383

"Polymer-in-ceramic" (PIC) electrolytes are widely investigated for all-solid-state batteries (ASSBs) due to their good thermal stability and mechanical performance. However, achieving fast and diversified lithium-ion transport inside the PIC electrolyte and uniform Li+ deposition at the electrolyte/Li anode interface simultaneously remains a challenge. Besides, the effect of ceramic particle size on Li+ transport and Li anodic compatibility is still unclear, which is essential for revealing the enhanced mechanism of the performance for PIC electrolytes. Herein, PIC with moderate ceramic size and contents are prepared and studied to strike a balance between ionic conductivity and anodic compatibility. Through moderate filler-filler interfacial impedance and appropriate surface roughness, a particle size of 17 µm is optimized to facilitate homogeneous Li+ flux on anode and enhance Li+ conductivity of the electrolyte. The PIC electrolyte with ceramic particle size of 17 µm achieves a high lithium ion transference number (0.74) and an ionic conductivity of 4.11 × 10-4 S cm-1 at 60 °C. The Li/PIC/Li symmetric cell can stably cycle for 2800 h at 0.2 mA cm-2 with 0.2 mAh cm-2. Additionally, the Li/PIC/LiFePO4 cell also delivers a superior cycling performance at 0.5C, a high capacity retention of 93.28% after 100 cycles and 83.17% after 200 cycles, respectively.

4.
Entropy (Basel) ; 25(8)2023 Aug 02.
Article En | MEDLINE | ID: mdl-37628190

Accurately predicting severe accident data in nuclear power plants is of utmost importance for ensuring their safety and reliability. However, existing methods often lack interpretability, thereby limiting their utility in decision making. In this paper, we present an interpretable framework, called GRUS, for forecasting severe accident data in nuclear power plants. Our approach combines the GRU model with SHAP analysis, enabling accurate predictions and offering valuable insights into the underlying mechanisms. To begin, we preprocess the data and extract temporal features. Subsequently, we employ the GRU model to generate preliminary predictions. To enhance the interpretability of our framework, we leverage SHAP analysis to assess the contributions of different features and develop a deeper understanding of their impact on the predictions. Finally, we retrain the GRU model using the selected dataset. Through extensive experimentation utilizing breach data from MSLB accidents and LOCAs, we demonstrate the superior performance of our GRUS framework compared to the mainstream GRU, LSTM, and ARIMAX models. Our framework effectively forecasts trends in core parameters during severe accidents, thereby bolstering decision-making capabilities and enabling more effective emergency response strategies in nuclear power plants.

5.
Phys Rev Lett ; 130(24): 240201, 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37390437

Heisenberg's uncertainty principle implies fundamental constraints on what properties of a quantum system we can simultaneously learn. However, it typically assumes that we probe these properties via measurements at a single point in time. In contrast, inferring causal dependencies in complex processes often requires interactive experimentation-multiple rounds of interventions where we adaptively probe the process with different inputs to observe how they affect outputs. Here, we demonstrate universal uncertainty principles for general interactive measurements involving arbitrary rounds of interventions. As a case study, we show that they imply an uncertainty trade-off between measurements compatible with different causal dependencies.


Learning , Uncertainty
6.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Article En | MEDLINE | ID: mdl-37049263

An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance and multi-dimensional capability. The emergence of 2D materials has brought new possibilities to develop next-generation infrared detectors. However, the inherent thickness limitations and the immature preparation of 2D materials still lead to low quantum efficiency and slow response speeds. This review summarizes 2D/3D hybrid van der Waals heterojunctions for infrared photodetection. First, the physical properties of 2D and 3D materials related to detection capability, including thickness, band gap, absorption band, quantum efficiency, and carrier mobility, are summarized. Then, the primary research progress of 2D/3D infrared detectors is reviewed from performance improvement (broadband, high-responsivity, fast response) and new functional devices (two-color detectors, polarization detectors). Importantly, combining low-doped 3D and flexible 2D materials can effectively improve the responsivity and detection speed due to a significant depletion region width. Furthermore, combining the anisotropic 2D lattice structure and high absorbance of 3D materials provides a new strategy in high-performance polarization detectors. This paper offers prospects for developing 2D/3D high-performance infrared detection technology.

7.
J Chem Theory Comput ; 19(8): 2270-2281, 2023 Apr 25.
Article En | MEDLINE | ID: mdl-36971474

Time-dependent density functional theory (TDDFT) is one of the most important tools for investigating the excited states of electrons. The TDDFT calculation for spin-conserving excitation, where collinear functionals are sufficient, has obtained great success and has become routine. However, TDDFT for noncollinear and spin-flip excitations, where noncollinear functionals are needed, is less widespread and still a challenge nowadays. This challenge lies in the severe numerical instabilities that root in the second-order derivatives of commonly used noncollinear functionals. To be free from this problem radically, noncollinear functionals with numerical stable derivatives are desired, and our recently developed approach, called the multicollinear approach, provides an option. In this work, the multicollinear approach is implemented in noncollinear and spin-flip TDDFT, and prototypical tests are given.

8.
J Phys Condens Matter ; 34(22)2022 Apr 01.
Article En | MEDLINE | ID: mdl-35287124

The near-exact iCIPT2 approach for strongly correlated systems of electrons, which stems from the combination of iterative configuration interaction (iCI, an exact solver of full CI) with configuration selection for static correlation and second-order perturbation theory (PT2) for dynamic correlation, is extended to the relativistic domain. In the spirit of spin separation, relativistic effects are treated in two steps: scalar relativity is treated by the infinite-order, spin-free part of the exact two-component (X2C) relativistic Hamiltonian, whereas spin-orbit coupling (SOC) is treated by the first-order, Douglas-Kroll-Hess-like SOC operator derived from the same X2C Hamiltonian. Two possible combinations of iCIPT2 with SOC are considered, i.e., SOiCI and iCISO. The former treats SOC and electron correlation on an equal footing, whereas the latter treats SOC in the spirit of state interaction, by constructing and diagonalizing an effective spin-orbit Hamiltonian matrix in a small number of correlated scalar states. Both double group and time reversal symmetries are incorporated to simplify the computation. Pilot applications reveal that SOiCI is very accurate for the spin-orbit splitting (SOS) of heavy atoms, whereas the computationally very cheap iCISO can safely be applied to the SOS of light atoms and even of systems containing heavy atoms when SOC is largely quenched by ligand fields.

9.
ACS Nano ; 15(12): 19621-19628, 2021 12 28.
Article En | MEDLINE | ID: mdl-34709028

Harata-Kodaka's rule predicting the induced chirality of the guest molecules by cyclodextrins has been discovered in the 1970-1990s, yet its ability to control the supramolecular handedness of self-assembled structures has not been sufficiently recognized. Here we show that in a coordinating self-assembly system that is able to form racemic cone shells symmetry breaking occurs if the ligand is prethreaded into α-cyclodextrin prior to metal ion addition, and the handedness of cone shells can be rationally manipulated by creating the two scenarios of the Harata-Kadaka rule through controlling the host-guest dynamics. Since the coordination complexes have strong self-assembling ability, the coordinating ligand would dethread from the cavity of α-cyclodextrin but leaving the induced chirality to the coordinating self-assembly, thus catalyzing symmetry breaking. This work reveals that the dynamic factors such as concentration and molar ratio may play important roles in symmetry breaking at the supramolecular level. The current strategy provides a promising method for the symmetry breaking and manipulation of the handedness of self-assembled materials formed by achiral molecules.


Cyclodextrins , alpha-Cyclodextrins , Catalysis , Functional Laterality
10.
ACS Appl Mater Interfaces ; 13(26): 30712-30721, 2021 Jul 07.
Article En | MEDLINE | ID: mdl-34156809

Rechargeable magnesium batteries (RMBs) are considered as one of the most promising next-generation secondary batteries due to their low cost, safety, dendrite-free nature, as well as high volumetric energy density. However, the lack of suitable cathode material and electrolyte is the greatest challenge facing practical RMBs. Herein, a hybrid electrolyte MgCl2/AlCl3/Mg(TFSI)2 (MACT) in dimethyl ether (DME) is developed and exhibits excellent electrochemical performance. The high ionic conductivity (6.82 mS cm-1) and unique solvation structure of [Mg2(µ-Cl)2(DME)4]2+ promote the fast Mg kinetics and favorable thermodynamics in hybrid Mg salts and DME electrolyte, accelerating mass transport and the charge transfer process. Therefore, the great rate capability can be realized both in symmetric Mg/Mg cell and in CuS/Mg full cell.

11.
J Chem Phys ; 152(6): 064113, 2020 Feb 14.
Article En | MEDLINE | ID: mdl-32061235

The BDF (Beijing Density Functional) program package is in the first place a platform for theoretical and methodological developments, standing out particularly in relativistic quantum chemical methods for chemistry and physics of atoms, molecules, and periodic solids containing heavy elements. These include the whole spectrum of relativistic Hamiltonians and their combinations with density functional theory for the electronic structure of ground states as well as time-dependent and static density functional linear response theories for electronically excited states and electric/magnetic properties. However, not to be confused by its name, BDF nowadays comprises also of standard and novel wave function-based correlation methods for the ground and excited states of strongly correlated systems of electrons [e.g., multireference configuration interaction, static-dynamic-static configuration interaction, static-dynamic-static second-order perturbation theory, n-electron valence second-order perturbation theory, iterative configuration interaction (iCI), iCI with selection plus PT2, and equation-of-motion coupled-cluster]. Additional features of BDF include a maximum occupation method for finding excited states of Hartree-Fock/Kohn-Sham (HF/KS) equations, a very efficient localization of HF/KS and complete active space self-consistent field orbitals, and a unique solver for exterior and interior roots of large matrix eigenvalue problems.

12.
Angew Chem Int Ed Engl ; 59(25): 10081-10086, 2020 Jun 15.
Article En | MEDLINE | ID: mdl-31633871

Hydration water greatly impacts the color of inorganic crystals, but it is still unknown whether hydration water can be utilized to systematically manipulate the emission color of organic luminescent groups. Now, metal ions with different hydration ability allow fine-tuning the emission color of a fluorescent group displaying aggregation induced emission (AIE). Because the hydration water can be removed easily by gentle heating or mechanical grinding and re-gained by solvent fuming, rewritable materials can be fabricated both in the hot-writing and cold-writing modes. This hydration-facilitated strategy will open up a new vista in fine-tuning the emission color of AIE molecules based on one synthesis and in the design of smart luminescent devices.

13.
J Chem Phys ; 150(15): 154113, 2019 Apr 21.
Article En | MEDLINE | ID: mdl-31005100

It is shown that quantum chemical calculations of the nuclear magnetic shieldings of a group of vicinal nuclei in a large molecule can be made sublinear scaling [i.e., O(1)] with respect to the molecular size. This is achieved by making both the diamagnetic and paramagnetic terms translation invariant [following the work of Ochsenfeld et al. J. Chem. Phys. 134, 074102 (2011)] and by making use of a local representation that is independent of the molecular size. Although only Hartree-Fock results are reported here, the idea can readily be extended to correlated wave function methods as well as the relativistic domain.

14.
Chem Soc Rev ; 47(12): 4481-4509, 2018 Jun 18.
Article En | MEDLINE | ID: mdl-29808872

The foundations, formalisms, technicalities, and practicalities of relativistic time-dependent density functional theories (R-TD-DFT) for spinor excited states of molecular systems containing heavy elements are critically reviewed. These include the four-component (4C) and exact two-component (X2C) variants (4C/X2C-TD-DFT) that treat both scalar relativistic effects and spin-orbit couplings (SOC) to infinite order, and a composite two-component variant (sf-X2C-S-TD-DFT-SOC) that treats scalar relativistic effects to infinite order via the spin-free part of the X2C Hamiltonian (sf-X2C) but SOC to first order via the Douglas-Kroll-Hess type of spin-orbit operator resulting also from the spin separation of the X2C Hamiltonian. Except for the common adiabatic approximation, the most essential ingredient for all the three variants of R-TD-DFT is the noncollinear exchange-correlation kernel that is invariant with respect to rotations in spin space. It is unfortunate that 4C- and X2C-TD-DFT cannot be made fully symmetry adapted for open-shell systems except for some special cases. Yet, this is possible for closed-shell systems by working with both double point group and time reversal adapted molecular spinors. In particular, the spinor Hessian can be made real-valued in this case, such that the 4C/X2C-TD-DFT eigenvalue problems can be solved in the same manner as nonrelativistic TD-DFT, a point that is discovered here for the first time. By contrast, sf-X2C-S-TD-DFT-SOC can access spinor excited states of both closed- and open-shell systems because spin symmetry is fully accounted for in the spin-adapted TD-DFT (S-TD-DFT). Possible further developments of R-TD-DFT are also highlighted.

15.
Langmuir ; 34(20): 5935-5942, 2018 05 22.
Article En | MEDLINE | ID: mdl-29708341

Allosteric regulation is extensively employed by nature to achieve functional control of protein or deoxyribonucleic acid through triggered conformational change at a remote site. We report that a similar strategy can be utilized in artificial self-assembly to control the self-assembled structure and its function. We show that on binding of metal ions to the headgroup of an amphiphile TTC4L, the conformational change may lead to change of the dipole orientation of the energy donor at the chain end. This on the one hand leads to a drastically different self-assembled structure; on the other hand, it enables light harvesting between the donor-acceptor. Because the Forster resonance fluorescence transfer efficiency is gated by metal ions, controlling the feeding of metal ions allows switching on and off of light harvesting. We expect that using allosteric self-assembly, we will be able to create abundant structures with distinct function from limited molecules, which show prominent potential for the postorganic modification of the structure and function of self-assembled materials.

17.
J Comput Chem ; 38(29): 2481-2499, 2017 11 05.
Article En | MEDLINE | ID: mdl-28795769

Based on the generic "static-dynamic-static" framework for strongly coupled basis vectors (Liu and Hoffman, Theor. Chem. Acc. 2014, 133, 1481), an iterative Vector Interaction (iVI) method is proposed for computing multiple exterior or interior eigenpairs of large symmetric/Hermitian matrices. Although it works with a fixed-dimensional search subspace, iVI can converge quickly and monotonically from above to the exact exterior/interior roots. The efficacy of iVI is demonstrated by taking both mathematical and physical matrices as examples. © 2017 Wiley Periodicals, Inc.

18.
Sci Rep ; 6: 36616, 2016 11 08.
Article En | MEDLINE | ID: mdl-27824161

The uncertainty principle is one of the characteristic properties of quantum theory based on incompatibility. Apart from the incompatible relation of quantum states, mutually exclusiveness is another remarkable phenomenon in the information- theoretic foundation of quantum theory. We investigate the role of mutual exclusive physical states in the recent work of stronger uncertainty relations for all incompatible observables by Mccone and Pati and generalize the weighted uncertainty relation to the product form as well as their multi-observable analogues. The new bounds capture both incompatibility and mutually exclusiveness, and are tighter compared with the existing bounds.

19.
Sci Rep ; 6: 35735, 2016 10 24.
Article En | MEDLINE | ID: mdl-27775010

We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)].

20.
Sci Rep ; 6: 30440, 2016 07 27.
Article En | MEDLINE | ID: mdl-27460975

In Hall's reformulation of the uncertainty principle, the entropic uncertainty relation occupies a core position and provides the first nontrivial bound for the information exclusion principle. Based upon recent developments on the uncertainty relation, we present new bounds for the information exclusion relation using majorization theory and combinatoric techniques, which reveal further characteristic properties of the overlap matrix between the measurements.

...