Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(20): e2310240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105415

RESUMEN

Silicon (Si) is regarded as the most potential anode material for next-generation lithium-ion batteries (LIBs). However, huge volume expansion hinders its commercial application. Here, a yolk-shell structural nitrogen-doped carbon coated Si@SiO2 is prepared by SiO2 template and HF etching method. The as-prepared composite exhibits superior cycling stability with a high reversible capacity of 577 mA h g-1 at 1 A g-1 after 1000 cycles. The stress effect of SiO2 on stabilizing the electrochemical performance of Si anode is systematically investigated for the first time. In situ thickness measurement reveals that the volume expansion thickness of Si@SiO2 upon charge-discharge is obviously smaller than Si, demonstrating the electrode expansion can be effectively inhibited to improve the cyclability. The density functional theory (DFT) calculation further demonstrates the moderate young's modulus and enhanced hardness after SiO2 coating contribute significantly to the mechanical reinforcement of overall Si@SiO2@void@NC composite. Various post-cycling electrode analyses also address the positive effects of inner stress from the Si core on effectively relieving the damage to electrode structure, facilitating the formation of a more stable inorganic-rich solid electrolyte interphase (SEI) layer. This study provides new insights for mechanical stability and excellent electrochemical performance of Si-based anode materials.

2.
Nanomicro Lett ; 16(1): 43, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047979

RESUMEN

HIGHLIGHTS: Influence of interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. The mitigation of interface polarization is precisely revealed by the combination of 2D modeling simulation and Cryo-TEM observation, which can be attributed to a higher fraction formation of conductive inorganic species in bilayer SEI, and primarily contributes to a linear decrease in ionic diffusion energy barrier. The improved stress dissipation presented by AFM and Raman shift is critical for the linear reduction in electrode residual stress and thickness swelling. Progress in the fast charging of high-capacity silicon monoxide (SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion. The construction of an interface conductive network effectively addresses the aforementioned problems; however, the impact of its quality on lithium-ion transfer and structure durability is yet to be explored. Herein, the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. 2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier. Furthermore, atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network, which is critical to the linear reduction of electrode residual stress. This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.

3.
Small Methods ; 7(6): e2201623, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36840644

RESUMEN

Silicon-based anodes have been considered as ideal candidates for next-generation Li-ion batteries. However, the rapid cyclability decay due to significant volume expansion limits its commercialization. Besides, the instable interface further aggravates the degradation. Carbon coating is one effective way to improve the electrochemical performance.The coating integrity may be a critical index for core-shell structure electrode materials. Herein, the coating integrity of SiOx @C composite is tested by a developed selective alkali dissolution, further quantitatively depicted by a proposed index of alkali solubility α. The effect of coating integrity on electrochemical performance reveals that SiOx dissolution loss has a significant impact on the overall electrode structure stability and interface property. Because of the side reaction between uncoated active SiOx and electrolyte, the quadratic decrease of initial coulombic efficiency and increase of solid electrolyte interphase thickness with the rise of alkali solubility are closely related to the generated F content induced by active material loss, further supported by the obvious linear rise of Li2 SiF6 fraction, leads to the linear increase of interface impedance and volume expansion rate, which may take primarily responsibility for the performance decay. This work propels the fundamental understanding on the interface failure mechnism and inspires rational high-performance electrode material design.

4.
Nano Lett ; 20(7): 5176-5184, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32520565

RESUMEN

Building a stable solid electrolyte interphase (SEI) is an effective method to enhance the performance of Si-based materials. However, the general strategy ignores the severe side reaction that originates from the penetration of the fluoride anion which influences the stability of the SEI. In this work, an analytical method is established to study the chemical reaction mechanism between the silicon and electrolyte by combining X-ray diffraction (XRD) with mass spectrometry (MS) technology. Additionally, a selective blocking layer coupling selectivity for the fluoride anion and a high conductivity is coated on the surface of silicon. With the protection of the selective blocking layer, the rate of the side reaction is decreased by 1700 times, and the corresponding SEI thickness is dwindled by 4 times. This work explores the mechanism of the intrinsic chemical reaction and provides future directions for improving Si-based anodes.

5.
Nano Lett ; 19(8): 5124-5132, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31260631

RESUMEN

Developing a practical silicon-based (Si-based) anode is a precondition for high-performance lithium-ion batteries. However, the chemical reactivity of the Si renders it liable to be consumed, which must be completely understood for it to be used in practical battery systems. Here, a fresh and fundamental mechanism is proposed for the rapid failure of Si-based materials. Silicon can chemically react with lithium hexafluorophosphate (LiPF6) to constantly generate lithium hexafluorosilicate (Li2SiF6) aggregates during cycling. In addition, nanocarbon coated on silicon acts as a catalyst to accelerate such detrimental reactions. By taking advantage of the high strength and toughness of silicon carbide (SiC), a SiC layer is introduced between the inner silicon and outer carbon layers to inhibit the formation of Li2SiF6. The side reaction rate decreases significantly due to the increase in the activation energy of the reaction. Si@SiC@C maintains a specific capacity of 980 mAh g-1 at a current density of 1 A g-1 after 800 cycles with an initial Coulombic efficiency over 88.5%. This study will contribute to improved design of Si-based anode for high-performance Li-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...