Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719112

RESUMEN

Since the combination of anticancer drugs and opioids is very common, apatinib and tramadol are likely to be used in combination clinically. This study evaluated the effects of apatinib on the pharmacokinetics of tramadol and its main metabolite O-desmethyltramadol in Sprague-Dawley (SD) rats and the inhibitory effects of apatinib on tramadol in rat liver microsomes (RLMs), human liver microsomes (HLMs) and recombinant human CYP2D6.1. The samples were determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The in vivo results showed that compared with the control group, apatinib increased the AUC(0-t), AUC(0-∞) and Cmax values of tramadol and O-desmethyltramadol, and decreased the values of VZ/F and CLz/F. In addition, the MRT(0-t), MRT(0-∞) values of O-desmethyltramadol were increased. In vitro, apatinib inhibited the metabolism of tramadol by a mixed way with IC50 of 1.927 µM in RLMs, 2.039 µM in HLMs and 15.32 µM in CYP2D6.1. In summary, according to our findings, apatinib has a strong in vitro inhibitory effect on tramadol, and apatinib can increase the analgesic effect of tramadol and O-desmethyltramadol in rats.


Asunto(s)
Tramadol , Humanos , Ratas , Animales , Tramadol/farmacología , Cromatografía Liquida , Citocromo P-450 CYP2D6 , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Microsomas Hepáticos
2.
Medicine (Baltimore) ; 102(32): e34459, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37565882

RESUMEN

To investigate the efficacy and safety of Jin three needles combined with Tong Qiao Wu Blood-streaming Tang in patients with acute ischemic stroke (AIS), this retrospective study analyzed the data of patients with AIS between January 2017 and December 2022. The National Institutes of Health Stroke Scale (NIHSS) scores, blood neuron-specific enolase, S100ß protein (S100ß), fibrinogen (FIB), cerebral infarct volume, D-dimer (D-D), prothrombin time (PT), activated partial thromboplastin time, hypersensitive c-reactive protein (hs-CRP), serum tumor necrosis factor-α (TNF-α), and homocysteine (Hcy) were compared between the 2 groups. The treatment effect was significantly better in the observation group than in the comparison group (P < .05). The NIHSS score, neuron-specific enolase, S100ß, and cerebral infarct volume were significantly lower in both groups after treatment than before treatment (P < .05). FIB and D-D levels were significantly lower and APTT and PT levels were significantly higher in both groups after treatment than before treatment (P < .05). TNF-α, hs-CRP, and Hcy were significantly lower in both groups after treatment than before treatment, and TNF-α, hs-CRP and Hcy were significantly lower in the observation group than in the comparison group (P < .05). No statistically significant difference in the incidence of adverse reactions occurred between the 2 groups (P > .05). Combining Jin three needles can improve the therapeutic effect in patients with AIS, promote the recovery of neurological function, improve coagulation function, and reduce the inflammatory response with good safety.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Proteína C-Reactiva/metabolismo , Estudios Retrospectivos , Agujas , Factor de Necrosis Tumoral alfa/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Fibrinógeno/uso terapéutico , Infarto Cerebral
3.
BMC Chem ; 17(1): 107, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649082

RESUMEN

BACKGROUND: This study establishes a UHPLC‒MS/MS method for the detection of zanubrutinib and explores its interaction with fluconazole and isavuconazole in rats. METHODS: A protein precipitation method using acetonitrile was used to prepare plasma samples using ibrutinib as an internal standard. Chromatographic separation and mass spectrometric detection of the analytes and internal standards were performed on a Shimadzu 8040 UHPLC‒MS/MS equipped with a Shim-pack velox C18 column (2.1 × 50 mm, 2.7 µm). Methanol and 0.1% formic acid-water were used as mobile phases. Intraday and interday precision and accuracy, extraction recoveries, and matrix effects of this method were determined. The linearity and sample stability of the method were assessed. Eighteen male Sprague‒Dawley (SD) rats were randomly divided into three groups with zanubrutinib (30 mg/kg) alone, zanubrutinib in combination with fluconazole (20 mg/kg) or zanubrutinib in combination with isavuconazole (20 mg/kg). Blood samples (200 µL) were collected at designated time points (ten evenly distributed time points within 12 h). The concentration of zanubrutinib was determined using the UHPLC‒MS/MS method developed in this study. RESULTS: The typical fragment ions were m/z 472.15 → 290.00 for zanubrutinib and m/z 441.20 → 138.10 for ibrutinib (IS). The range of the standard curve was 1-1000 ng/mL with a regressive coefficient (R2) of 0.999. The recoveries and matrix effects were 91.9-98.2% and 97.5-106.3%, respectively, at different concentration levels. The values for intra- and interday RSD% were lower than 9.8% and 5.8%, respectively. The RSD% value was less than 10.3%, and the RE% value was less than ± 4.0% under different storage conditions. Analysis of pharmacokinetic results suggested that coadministration with isavuconazole or fluconazole significantly increased the area under the curve (1081.67 ± 43.81 vs. 1267.55 ± 79.35 vs. 1721.61 ± 219.36), peak plasma concentration (332.00 ± 52.79 vs. 396.05 ± 37.19 vs. 494.51 ± 130.68), and time to peak (1.83 ± 0.41 vs. 2.00 ± 0.00 vs. 2.17 ± 0.41) compared to zanubrutinib alone. CONCLUSION: This study provides information to understand the metabolism of zanubrutinib with concurrent use with isavuconazole or fluconazole, and further clinical trials are needed to validate the results in animals.

4.
Front Pharmacol ; 13: 960311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935882

RESUMEN

Almonertinib was approved for the first-line treatment of advanced NSCLC patients with EGFR-TKI-sensitive genetic mutations by National Medical Products Administration (NMPA) in 2021.The purpose of this study was to establish and validate a fast, accurate, stable and facile ultra-performance liquid chromatography-tandem mass spectrometry method for the quantification of almonertinib in rat plasma, it was employed to explore the effect of Paxlovid on the pharmacokinetics of almonertinib in rats. Zanubrutinib was used as an internal standard (IS), and the plasma samples were prepared by the protein precipitation method using acetonitrile. Chromatographic separation was carried out on a Shimadzu LC-20AT ultra-performance liquid chromatography system using a Shim-pack velox C18 (2.1× 50 mm, 2.7 µM) column. The mobile phase consisted of methanol and 0.1% formic acid-water. Mass spectrum analysis was executed using Shimadzu 8040 Triple quadrupole mass spectrometry. The precursor and product ions of the analyte and internal standard were detected in multiple reaction monitoring (MRM) mode. The typical fragment ions were m/z 526.20 → 72.10 for almonertinib and m/z 472.15 → 290.00 for zanubrutinib (IS). The method was validated to have good linearity for quantifying almonertinib in rat plasma from 0.1-1000 ng/ml (R2 = 0.999), and the LLOQ was 0.1 ng/ml. The validity of this method was sufficiently verified for selectivity, specificity, extraction recovery, matrix effect, accuracy, precision and stability. The validated UHPLC-MS/MS method was successfully applied to the drug interaction study of almonertinib with Paxlovid in rats. Paxlovid significantly inhibits the metabolism of almonertinib and increased the exposure of almonertinib. This study can help us to understand the metabolic profile of almonertinib better, and further human trials should be conducted to validate the results.

5.
Clin Transl Med ; 12(3): e777, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35343085

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most predominant form of liver diseases worldwide. Recent evidence shows that myeloid differentiation factor 2 (MD2), a protein in innate immunity and inflammation, regulates liver injury in models of NAFLD. Here, we investigated a new mechanism by which MD2 participates in the pathogenesis of experimental NAFLD. METHODS: Wild-type, Md2-/- and bone marrow reconstitution mice fed with high-fat diet (HFD) were used to identify the role of hepatocyte MD2 in NAFLD. Transcriptomic RNA-seq and pathway enrich analysis were performed to explore the potential mechanisms of MD2. In vitro, primary hepatocytes and macrophages were cultured for mechanistic studies. RESULTS: Transcriptome analysis and bone marrow reconstitution studies showed that hepatocyte MD2 may participate in regulating lipid metabolism in models with NAFLD. We then discovered that Md2 deficiency in mice prevents HFD-mediated suppression of AMP-activated protein kinase (AMPK). This preservation of AMPK in Md2-deficient mice was associated with normalized sterol regulatory element binding protein 1 (SREBP1) transcriptional program and a lack of lipid accumulation in both hepatocytes and liver. We then showed that hepatocyte MD2 links HFD to AMPK/SREBP1 through TANK binding kinase 1 (TBK1). In addition, MD2-increased inflammatory factor from macrophages induces hepatic TBK1 activation and AMPK suppression. CONCLUSION: Hepatocyte MD2 plays a pathogenic role in NAFLD through TBK1-AMPK/SREBP1 and lipid metabolism pathway. These studies provide new insight into a non-inflammatory function of MD2 and evidence for the important role of MD2 in NALFD.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Lípidos/efectos adversos , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Serina-Treonina Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA