Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(15): 4114-4117, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090872

RESUMEN

High-power laser interacting with matter generates intense electromagnetic pulses (EMPs), which are closely associated with laser and target parameters. In this study, EMPs induced by picosecond (ps) laser coupling with solid targets are recorded at the XG-III laser facility. Gold wire targets produce more intense EMPs with a maximum EMP value of 608 kV/m compared to some planar targets. EMP propagation in the normal direction is highly coincident with the expansion of detected hot electrons, which is verified by the particle-in-cell simulations. This work is expected to pave, to our knowledge, a new avenue for directional guidance of laser-driven EMPs.

2.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062822

RESUMEN

Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.


Asunto(s)
Flagelos , Simbiosis , Sistemas de Secreción Tipo III , Flagelos/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Xenorhabdus/metabolismo , Xenorhabdus/genética , Xenorhabdus/fisiología , Regulación Bacteriana de la Expresión Génica , Photorhabdus/metabolismo , Photorhabdus/patogenicidad , Photorhabdus/genética , Photorhabdus/fisiología , Nematodos/microbiología , Nematodos/metabolismo , Biopelículas/crecimiento & desarrollo
3.
Biomed Pharmacother ; 177: 117065, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971010

RESUMEN

Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Enfermedades Metabólicas , Viroma , Humanos , Trasplante de Microbiota Fecal/métodos , Enfermedades Metabólicas/terapia , Animales , Heces/virología , Heces/microbiología
5.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197767

RESUMEN

The Thomson parabola ion spectrometer is vulnerable to intense electromagnetic pulses (EMPs) generated by a high-power laser interacting with solid targets. A metal shielding cage with a circular aperture of 1 mm diameter is designed to mitigate EMPs induced by a picosecond laser irradiating a copper target in an experiment where additionally an 8-ns delayed nanosecond laser is incident into an aluminum target at the XG-III laser facility. The implementation of the shielding cage reduces the maximum EMP amplitude inside the cage to 5.2 kV/m, and the simulation results indicate that the cage effectively shields electromagnetic waves. However, the laser-accelerated relativistic electrons which escaped the target potential accumulate charge on the surface of the cage, which is responsible for the detected EMPs within the cage. To further alleviate EMPs, a lead wall and an absorbing material (ECCOSORB AN-94) were added before the cage, significantly blocking the propagation of electrons. These findings provide valuable insights into EMP generation in large-scale laser infrastructures and serve as a foundation for electromagnetic shielding design.

6.
Oncogene ; 43(5): 341-353, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040806

RESUMEN

Doxorubicin and platinum are widely used in the frontline treatment of osteosarcoma, but resistance to chemotherapy limits its curative effect. Here, we have identified that METTL1 mediated N7-Methyladenosine (m7G) low expressed in osteosarcoma tissues, plays a critical oncogenic role, and enhances osteosarcoma chemosensitivity in osteosarcoma. Mechanistically, AlkAniline-Seq data revealed that Ferritin heavy chain (FTH1), the main component of ferritin, which is crucial for iron homeostasis and the inhibition of lipid peroxidation, is one of the top 10 genes with the most significant change in m7G methylation sites mediated by METTL1 in human osteosarcoma cells. Interestingly, METTL1 significantly increased the expression of FTH1 at the mRNA level but was remarkably suppressed at the protein level. We then identified primary (pri)-miR-26a and pri-miR-98 in the Top 20 m7G-methylated pri-miRNAs with highly conserved species. Further results confirmed that METTL1 enhances cell ferroptosis by targeting FTH1 and primary (pri)-miR-26a, promoting their maturity by enhancing RNA stability dependent on m7G methylation. The increase of mature miR-26a-5p that resulted from METTL1 overexpression could further target FTH1 mRNA and eliminate FTH1 translation efficiency. Moreover, the reduction of FTH1 translation dramatically increases cell ferroptosis and promotes the sensitivity of osteosarcoma cells to chemotherapy drugs. Collectively, our study demonstrates the METTL1/pri-miR-26a/FTH1 axis signaling in osteosarcoma and highlights the functional importance of METTL1 and m7G methylation in the progression and chemotherapy resistance of osteosarcoma, suggesting that reprogramming RNA m7G methylation as a potential and promising strategy for osteosarcoma treatment.


Asunto(s)
Neoplasias Óseas , Ferroptosis , MicroARNs , Osteosarcoma , Humanos , Ferroptosis/genética , MicroARNs/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , ARN Mensajero , Ferritinas , Oxidorreductasas/metabolismo
7.
Toxicol Appl Pharmacol ; 482: 116798, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38160894

RESUMEN

Osteosarcoma (OS) is a common malignant tumor disease in the department of orthopedics, which is prone to the age of adolescents and children under 20 years old. Arsenic trioxide (ATO), an ancient poison, has been reported to play a critical role in a variety of tumor treatments, including OS. However, due to certain poisonous side effects such as cardiotoxicity and hepatotoxicity, clinical application of ATO has been greatly limited. Here we report that low doses of ATO (1 µM) observably reduced the half-effective inhibitory concentration (IC50) of vitamin C on OS cells. Compared with the treatment alone, the synthetic application of vitamin C (VitC, 800 µM) and ATO (1 µM) significantly further inhibited the proliferation, migration, and invasion of OS cells and promoted cell apoptosis in vitro. Meanwhile, we observed that the combined application of VitC and ATO directly suppresses the aerobic glycolysis of OS cells with the decreased production of pyruvate, lactate, and ATP via inhibiting the expression of the critical glycolytic genes (PGK1, PGM1, and LDHA). Moreover, the combination of VitC (200 mg/kg) and ATO (1 mg/kg) with tail vein injection significantly delayed OS growth and migration of nude mice by inhibiting aerobic glycolysis of OS. Thus, our results demonstrate that VitC effectively increases the sensitivity of OS to low concentrations of ATO via inhibiting aerobic glycolysis to alleviate the toxic side effects of high doses of arsenic trioxide, suggesting that synthetic application of VitC and ATO is a promising approach for the clinical treatment of human OS.


Asunto(s)
Arsenicales , Neoplasias Óseas , Osteosarcoma , Animales , Ratones , Niño , Humanos , Adolescente , Adulto Joven , Adulto , Trióxido de Arsénico/farmacología , Ácido Ascórbico/farmacología , Ratones Desnudos , Óxidos/toxicidad , Arsenicales/farmacología , Apoptosis , Osteosarcoma/tratamiento farmacológico , Vitaminas/farmacología , Neoplasias Óseas/tratamiento farmacológico , Glucólisis , Línea Celular Tumoral
8.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(6): 608-611, 2023 Nov 30.
Artículo en Chino | MEDLINE | ID: mdl-38086715

RESUMEN

This article briefly describes the imaging performance standards of the kilovolt X-ray image guidance system used in radiotherapy, analyzes the main aspects that should be considered in the image quality of X-IGRT system, and focuses on parameters that should be considered in the imaging performance evaluation criteria of the CBCT X-IGRT. The purpose is to sort out the imaging performance evaluation standards of kilovolt X-IGRT system, clarify the image quality requirements of X-IGRT equipment, and reach a consensus when evaluating the imaging performance of X-IGRT system.


Asunto(s)
Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Tomografía Computarizada de Haz Cónico Espiral , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada de Haz Cónico/métodos , Radioterapia de Intensidad Modulada/métodos , Radioterapia Guiada por Imagen/métodos
9.
Signal Transduct Target Ther ; 8(1): 121, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36967385

RESUMEN

Heart failure (HF) patients in general have a higher risk of developing cancer. Several animal studies have indicated that cardiac remodeling and HF remarkably accelerate tumor progression, highlighting a cause-and-effect relationship between these two disease entities. Targeting ferroptosis, a prevailing form of non-apoptotic cell death, has been considered a promising therapeutic strategy for human cancers. Exosomes critically contribute to proximal and distant organ-organ communications and play crucial roles in regulating diseases in a paracrine manner. However, whether exosomes control the sensitivity of cancer to ferroptosis via regulating the cardiomyocyte-tumor cell crosstalk in ischemic HF has not yet been explored. Here, we demonstrate that myocardial infarction (MI) decreased the sensitivity of cancer cells to the canonical ferroptosis activator erastin or imidazole ketone erastin in a mouse model of xenograft tumor. Post-MI plasma exosomes potently blunted the sensitivity of tumor cells to ferroptosis inducers both in vitro in mouse Lewis lung carcinoma cell line LLC and osteosarcoma cell line K7M2 and in vivo with xenograft tumorigenesis model. The expression of miR-22-3p in cardiomyocytes and plasma-exosomes was significantly upregulated in the failing hearts of mice with chronic MI and of HF patients as well. Incubation of tumor cells with the exosomes isolated from post-MI mouse plasma or overexpression of miR-22-3p alone abrogated erastin-induced ferroptotic cell death in vitro. Cardiomyocyte-enriched miR-22-3p was packaged in exosomes and transferred into tumor cells. Inhibition of cardiomyocyte-specific miR-22-3p by AAV9 sponge increased the sensitivity of cancer cells to ferroptosis. ACSL4, a pro-ferroptotic gene, was experimentally established as a target of miR-22-3p in tumor cells. Taken together, our findings uncovered for the first time that MI suppresses erastin-induced ferroptosis through releasing miR-22-3p-enriched exosomes derived from cardiomyocytes. Therefore, targeting exosome-mediated cardiomyocyte/tumor pathological communication may offer a novel approach for the ferroptosis-based antitumor therapy.


Asunto(s)
Exosomas , Ferroptosis , Insuficiencia Cardíaca , MicroARNs , Infarto del Miocardio , Neoplasias , Humanos , Ratones , Animales , Miocitos Cardíacos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ferroptosis/genética , Exosomas/metabolismo , Infarto del Miocardio/genética , Neoplasias/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología
10.
Stem Cells Transl Med ; 11(9): 987-1001, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35980318

RESUMEN

The development of osteoporosis is often accompanied by autophagy disturbance, which also causes new osteoblast defects from bone marrow mesenchymal stem cells (BMSCs). However, the underlying molecular mechanisms are still not fully understood. Methyltransferase-like 14 (METTL14) is the main enzyme for N6-methyladenosine (m6A), the most prevalent internal modification in mammalian mRNAs, and it has been implicated in many bioprocesses. Herein, we demonstrate that METTL14 plays a critical role in autophagy induction and hinders osteoporosis process whose expression is decreased both in human osteoporosis bone tissue and ovariectomy (OVX) mice. In vivo, METTL14+/- knockdown mice exhibit elevated bone loss and impaired autophagy similar to the OVX mice, while overexpression of METTL14 significantly promotes bone formation and inhibits the progression of osteoporosis caused by OVX surgery. In vitro, METTL14 overexpression significantly enhances the osteogenic differentiation ability of BMSCs through regulating the expression of beclin-1 depending on m6A modification and inducing autophagy; the opposite is true with METTL14 silencing. Subsequently, m6A-binding proteins IGF2BP1/2/3 recognize m6A-methylated beclin-1 mRNA and promote its translation via mediating RNA stabilization. Furthermore, METTL14 negatively regulates osteoclast differentiation. Collectively, our study reveals the METTL14/IGF2BPs/beclin-1 signal axis in BMSCs osteogenic differentiation and highlights the critical roles of METTL14-mediated m6A modification in osteoporosis.


Asunto(s)
Autofagia , Células Madre Mesenquimatosas , Metiltransferasas , Osteoporosis , Animales , Beclina-1/genética , Beclina-1/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Femenino , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Osteogénesis/fisiología , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA