Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Ecol Evol ; 14(5): e11355, 2024 May.
Article En | MEDLINE | ID: mdl-38694754

The mitochondrial genome (mitogenome) has been extensively used as molecular markers in determining the insect phylogenetic relationships. In order to resolve the relationships among tribes and subtribes of Satyrinae at the mitochondrial genomic level, we obtained the complete mitogenome of Aulocera merlina (Oberthür, 1890) (Lepidoptera: Nymphalidae: Satyrinae) with a size of 15,259 bp. The mitogenome consisted of 37 typical genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A + T-rich region. The gene organization and arrangement were similar to those of all other known Satyrinae mitogenomes. All PCGs were initiated with the canonical codon pattern ATN, except for the cox1 gene, which used an atypical CGA codon. Nine PCGs used the complete stop codon TAA, while the remaining PCGs (cox1, cox2, nad4, and nad5) were terminated with a single T nucleotide. The canonical cloverleaf secondary structures were found in all tRNAs, except for trnS1 which lacked a dihydrouridine arm. The 448 bp A + T-rich region was located between rrnS and trnM, and it included the motif ATAGA followed by a 19-bp poly-T stretch and a microsatellite-like (TA)6 element preceded by the ATTTA motif. The phylogenetic tree, inferred using Bayesian inference and maximum likelihood methods, generated similar tree topologies, revealing well-supported monophyletic groups at the tribe level and recovering the relationship ((Satyrini + Melanitini) + ((Amathusiini + Elymniini) + Zetherini)). The close relationship between Satyrina and Melanargiina within the Satyrini was widely accepted. Additionally, Lethina, Parargina, and Mycalesina were closely related and collectively formed a sister group to Coenonymphina. Moreover, A. merlina was closely related to Oeneis buddha within the Satyrina. These findings will provide valuable information for future studies aiming to elucidate the phylogenetic relationships of Satyrinae.

2.
Anal Chim Acta ; 1285: 342025, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38057062

Biogenic amines (BAs), as important indicators for evaluating food spoilage caused by fermentation processes or microbial activities, present significant risks of food safety. Consequently, the development of a simple, sensitive, and selective detection method for amines is of great importance. In this study, we proposed a three-in-one sensor 3,6-bis(dimethylamino)-9-(ethylthio)xanthylium (PSE) for high sensitivity and selectivity detecting BAs with multimodal responses, including olfactory, colorimetric, and fluorescent signals, thus facilitating convenient real-time detection of BAs. Mechanism study indicated that the nucleophilic substitution of PSE with BAs induced such rapid multi-responses with a low detection limit (LOD = 0.03 µM). We further fabricated PSE loaded paper for portable detection of BAs vapors. And the accurate determination of BAs levels is achieved through analyzing the RGB color mode. Finally, we successfully applied these test strips for non-destructive assessing meat beef freshness with the assistance of a smartphone in on-site scenarios.


Biogenic Amines , Food Safety , Animals , Cattle , Biogenic Amines/analysis , Meat/analysis , Colorimetry
3.
Chin Med ; 18(1): 124, 2023 Sep 23.
Article En | MEDLINE | ID: mdl-37742025

Tumours do not exist in isolation from the organism; their growth, proliferation, motility, and immunosuppressive response are intricately connected to the tumour's microenvironment. As tumour cells and the microenvironment coevolve, an inflammatory microenvironment ensues, propelling the phenomenon of inflammation-cancer transformation-an idea proposed by modern medicine. This review aims to encapsulate the array of representative factors within the tumour's inflammatory microenvironment, such as interleukins (IL-6, IL-10, IL-17, IL-1ß), transforming growth factor-beta (TGF-ß), interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs). Moreover, drawing upon research in traditional Chinese medicine (TCM) and pharmacology, we explore the delicate interplay between these factors and tumour-associated inflammatory cells: tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs) and dendritic cells (DCs). By analyzing the tumour-promoting effects of these entities, we delve into the connotations of Academician Tong Xiao-lin's novel model of "state-target differentiation" and its application in the diagnosis and treatment of tumours. Our aim is to enhance the precision and targeting of tumour treatment in clinical practice. Delving deeper into our understanding of tumour pathogenesis through the lens of modern medicine, we discern the key etiology and pathogenesis throughout the entire developmental stage of tumours, unveiling the evolutionary patterns of Chinese Medicine (CM) states: heat state → phlegm state → stagnation state → deficiency state. Building upon this foundation, we devised a state-regulating formula. Simultaneously, drawing on pharmacological research in traditional Chinese medicine (TCM), we meticulously identified a range of targeted drugs that effectively modulate the aforementioned tumour-related mediators. This comprehensive strategy-a harmonious integration of state identification, target recognition, and simultaneous regulation-aims to elevate clinical efficacy. The fusion of TCM with Western medicine in tumour treatment introduces novel dimensions to the precise and refined application of TCM in clinical practice.

4.
Environ Res ; 236(Pt 1): 116745, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37500040

The activation of persulfate technology using carbon-based materials doped with heteroatoms has been extensively researched for the elimination of refractory pollutants in wastewater. In this study, metal-organic frameworks were utilized as precursors to synthesize P, N dual-doped carbon material (PNC), which was employed to activate peroxymonosulfate (PMS) for the degradation of tetracycline hydrochloride (TCH). The results demonstrated a 90.2% removal efficiency of total organic carbon within 60 min. The significant increase of surface defects on the nitrogen self-doped porous carbon materials anchored with phosphorus promoted the conversion of superoxide radical to singlet oxygen during PMS activation, which was identified as the key active species of PNC/PMS system. Additionally, the enhanced direct electron transfer also facilitated the degradation of TCH. Consequently, TCH was successfully degraded into nontoxic and harmless inorganic small molecules. The findings of this research provide valuable insights into improving the performance of heteroatom-doped carbon materials for pollutant degradation by activating PMS and transforming the non-radical pathway. The results highlight the potential of metal-organic frameworks derived heteroatoms dual-doped porous carbon catalysts for the development of advanced treatment technologies in wastewater treatment.

6.
Front Immunol ; 14: 1134123, 2023.
Article En | MEDLINE | ID: mdl-37063841

Objectives: The Notch signaling pathway has been implicated in the pathogenesis of active tuberculosis (TB), and Th1-type cell-mediated immunity is essential for effective control of mycobacterial infection. However, it remains unclear whether Notch signaling molecules (Notch1, DLL1, and Hes1) and Th1-type factors (T-bet and IFN-γ) can serve as biomarkers for tracking the progression of active TB at different stages along with peripheral blood white blood cell (WBC) parameters. Methods: A total of 60 participants were enrolled in the study, including 37 confirmed TB patients (mild (n=17), moderate/severe (n=20)) and 23 healthy controls. The mRNA expression of Notch1, DLL1, Hes1, T-bet and IFN-γ in the peripheral blood mononuclear cells (PBMCs) of the subjects was measured by RT-qPCR, then analyzed for differences. Receiver Operating Characteristic curve (ROC) was used to assess the effectiveness of each factor as a biomarker in identifying lung injury. Results: We found that mRNA expression levels of Notch1, DLL1, and Hes1 were upregulated in active TB patients, with higher levels observed in those with moderate/severe TB than those with mild TB or without TB. In contrast, mRNA levels of T-bet and IFN-γ were downregulated and significantly lower in mild and moderate/severe cases. Furthermore, the combiROC analysis of IFN-γ and the percentage of lymphocytes (L%) among WBC parameters showed superior discriminatory ability compared to other factors for identifying individuals with active TB versus healthy individuals. Notably, Notch pathway molecules were more effective than Th1-type factors and WBC parameters in differentiating mild and moderate/severe cases of active TB, particularly in the combiROC model that included Notch1 and Hes1. Conclusions: Our study demonstrated that Notch1, Hes1, IFN-γ, and L% can be used as biomarkers to identify different stages of active TB patients and to monitor the effectiveness of treatment.


Leukocytes, Mononuclear , Tuberculosis , Humans , Leukocytes, Mononuclear/metabolism , Tuberculosis/diagnosis , Biomarkers , Prognosis , RNA, Messenger , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
7.
Mar Pollut Bull ; 190: 114831, 2023 May.
Article En | MEDLINE | ID: mdl-36944286

The cuttlefish (Sepiella inermis) is an economically important species in the coastal seas of China. The impacts of ocean acidification on the ability of juvenile cuttlefish to select a suitable habitat, its hunting and swimming behavior, remains unknown. We examined behavior-related responses and the eye and cuttlebone structure of juvenile cuttlefish following short-term exposure to CO2-enriched seawater. The predation success rate decreased with the elevation in CO2 concentration. In the CO2 treatment groups, cuttlefish spent more time in the dark zone and the average swimming speed and total swimming distance significantly decreased. The structure of the retina and cuttlebone was affected by seawater acidification. Moreover, apoptotic cells were significantly increased in the eyes. In the wild, the impairment of the eye and cuttlebone may decrease the predation ability of juvenile cuttlefish and negatively affect their ability to select a suitable habitat, which would be detrimental to its population.


Decapodiformes , Seawater , Animals , Decapodiformes/chemistry , Seawater/chemistry , Hydrogen-Ion Concentration , Ocean Acidification , Carbon Dioxide/analysis , Oceans and Seas
8.
Front Pharmacol ; 13: 1069310, 2022.
Article En | MEDLINE | ID: mdl-36532729

Aquaporins (AQPs) are a family of transmembrane proteins expressed in various organ systems. Many studies have shown that the abnormal expression of AQPs is associated with gastrointestinal, skin, liver, kidneys, edema, cancer, and other diseases. The majority of AQPs are expressed in the digestive system and have important implications for the physiopathology of the gastrointestinal tract as well as other tissues and organs. AQP regulators can prevent and treat most gastrointestinal-related diseases, such as colorectal cancer, gastric ulcer, and gastric cancer. Although recent studies have proposed clinically relevant AQP-targeted therapies, such as the development of AQP inhibitors, clinical trials are still lacking and there are many difficulties. Traditional Chinese medicine (TCM) has been used in China for thousands of years to prevent, treat and diagnose diseases, and is under the guidance of Chinese medicine (CM) theory. Herein, we review the latest research on the regulation of AQPs by TCMs and their active components, including Rhei Radix et Rhizoma, Atractylodis macrocephalae Rhizoma, Salviae miltiorrhizae Radix et Rhizoma, Poria, Astragali radix, and another 26 TCMs, as well as active components, which include the active components include anthraquinones, saponins, polysaccharides, and flavonoid glycosides. Through our review and discussion of numerous studies, we attempt to explore the regulatory effects of TCMs and their active components on AQP expression in the corresponding parts of the body in terms of the Triple Energizer concept in Chinese medicine defined as "upper energizer, middle energizer, and lower energizer,"so as to offer unique opportunities for the development of AQP-related therapeutic drugs for digestive system diseases.

9.
Front Pharmacol ; 13: 1039412, 2022.
Article En | MEDLINE | ID: mdl-36313301

In recent years, activation of thermal transient receptor potential (TRP) ion channels at a range of temperatures has received widespread attention as a target for traditional Chinese medicine (TCM) to regulate body temperature and relieve pain. Discovery of transient receptor potential vanilloid 1 (TRPV1) was awarded a Nobel Prize, reflecting the importance of these channels. Here, the regulatory effects of TCMs and their active ingredients on TRP ion channels are reviewed, and future directions for research on the cold, hot, warm, cool, and neutral natures of TCMs are considered. In herbs with cold, hot, warm, cool, and neutral natures, we found 29 TCMs with regulatory effects on TRP ion channels, including Cinnamomi Cortex, Capsici Fructus, Rhei Radix et Rhizoma, Macleayae cordatae Herba, Menthae Haplocalycis Herba, and Rhodiolae Crenulatae Radix et Rhizoma. Although some progress has been made in understanding the regulation of TRP ion channels by TCMs and their ingredients, the molecular mechanism by which TCMs have this effect remains to be further studied. We hope this review will provide a reference for further research on the cold, hot, warm, cool, and neutral natures of TCMs.

10.
Curr Drug Metab ; 23(8): 652-665, 2022.
Article En | MEDLINE | ID: mdl-35980053

AIMS: In this study, we aim to establish an integrated research strategy for the rapid chemical profiling of Compound Huanggen Granules (CHG) and absorbed prototypes in plasma by integrating the UHPLC-Q-TOF-MSE method and data post-processing strategy, to provide some valuable research basis for the further studies on the quality control, pharmacokinetics and pharmacodynamics of CHG. BACKGROUND: Compound Huanggen Granules (CHG), a traditional Chinese medicine (TCM) hospital preparation, has long been used in clinical practice for the prevention and treatment of liver fibrosis. However, due to the lack of in vitro chemical and in vivo metabolism studies, its pharmacodynamic material basis is still unrevealed. OBJECTIVE: To simplify the mass data post-processing process and enhance the structural identification efficiency by reducing the possibility of false positive, and rapidly identify the absorbed prototypes in plasma after oral administration of CHG. METHODS: An analytical strategy integrating ultra high-performance liquid chromatography coupled with quadrupletime- of-flight mass spectrometry (UHPLC-Q-TOF-MSE, E represents collision energy) method and data postprocessing strategy based on a self-built in-house components database was established and utilized for the rapid characterization of the multi-constituents of CHG and prototypes in cynomolgus monkey plasma after oral administration. RESULTS: As a result, a total of 81 compounds, including 14 phenolic acids, 6 coumarins, 25 flavonoids, 5 anthraquinones, 5 phenylpropanoids, 15 triterpenoid saponins, and 11 others, were plausibly or unambiguously identified based on their accurate masses, and MS/MS fragment pathways analysis, and also by comparison of retention time and MS data with reference standards. In the in vivo study, according to the extracted ion chromatograms (EICs) of identified components, 34 absorbed prototypical components were rapidly identified in cynomolgus monkey plasma after oral administration. CONCLUSION: It was demonstrated that the data post-processing strategy applied in this study could greatly simplify the data post-processing process and enhance the structural identification efficiency by reducing the possibility of false positives, and the results obtained might be helpful for further studies on the quality control, pharmacokinetics and pharmacodynamics of CHG.


Medicine, Chinese Traditional , Tandem Mass Spectrometry , Animals , Macaca fascicularis
11.
J Sep Sci ; 45(18): 3443-3458, 2022 Sep.
Article En | MEDLINE | ID: mdl-35932223

In this study, we proposed an integrated analytical strategy for the rapid and comprehensive discovery of a specific class of secoiridoid glycosides from a Yao medicine, Jasminum pentaneurum Hand.-Mazz. The strategy fully took advantage of the accuracy of ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry, and the efficiency of diagnostic ion filtering and neutral loss filtering. Twenty-four secoiridoid glycosides, including three known ones and 21 unreported ones, were rapidly discovered and characterized based on the detail analysis of their mass spectrometry data. Particularly, 10-syringicoyl-ligustroside (18) was isolated under the guidance of mass spectrometry analysis. Its chemical structure was elucidated on the basis of extensive spectroscopic data analysis, and absolute configuration was further elucidated by comparison of its experimental and electronic circular dichroism spectra. Furthermore, the mass spectrometry data of 18 was analyzed and the corresponding results indicated that its fragment pathway was fully consistent with the applied diagnostic ion filtering and neutral loss filtering rules, and thus the precision and efficiency of the integrated strategy were validated. The result demonstrated that the proposed integrated strategy could serve as a rapid, accurate, and comprehensive targeted components discovery method to effectively screen out those ingredients of interest from the complex herbal medicines.


Drugs, Chinese Herbal , Jasminum , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drugs, Chinese Herbal/analysis , Iridoid Glycosides/analysis , Tandem Mass Spectrometry/methods
12.
Angew Chem Int Ed Engl ; 61(18): e202201540, 2022 Apr 25.
Article En | MEDLINE | ID: mdl-35199428

Direct conversion of methane into value-added chemicals, such as methanol under mild conditions, is a promising route for industrial applications. In this work, atomically dispersed Rh on TiO2 suspended in an aqueous solution was used for the oxidation of methane to methanol. Promoted by copper cations (as co-catalyst) in solution, the catalysts exhibited high activity and selectivity for the production of methanol using molecular oxygen with the presence of carbon monoxide at 150 °C with a reaction pressure of 31 bar. Millimole level yields of methanol were reached with the selectivity higher than 99 % using the Rh/TiO2 catalysts with the promotion of the copper cation. CO was the reductive agent to generate H2 from H2 O, which led to the formation of H2 O2 through the reaction of H2 and O2 . Atomically dispersed Rh activated the C-H bond in CH4 and catalyzed the oxidation using H2 O2 . Copper cations maintained the low-valence state of Rh. Moreover, copper acted as a scavenger for suppressing the overoxidation, thus leading to the high selectivity of methanol.

13.
Front Oncol ; 11: 727130, 2021.
Article En | MEDLINE | ID: mdl-34858814

Colon cancer is the third most common cancer in the world with a high mortality rate. At present, surgery combined with radiotherapy and chemotherapy is the primary treatment, but patient prognosis remains poor. Traditional Chinese medicine (TCM) has become a complementary and alternative source of anti-cancer drugs. Camellia nitidissima Chi (CNC) is a TCM used to treat a variety of cancers. However, the role of CNC in cancer remains elusive, and its effect and mechanism on colon cancer have not been reported. Here, we show that CNC exerts an excellent inhibitory effect on colon cancer proliferation and apoptosis induction in vitro and in vivo. We performed label free-based quantitative proteomic analysis to evaluate the HCT116 cells treated with CNC. Our data revealed a total of 363 differentially expressed proteins, of which 157 were up-regulated and 206 down-regulated. Gene Ontology enrichment analysis showed that these proteins were involved in tumor occurrence and development through multiple biological processes such as cell proliferation, cell apoptosis, cell cycle, and cell death. Interestingly, we also found significant changes in ferroptosis pathways. The role of essential proteins glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HMOX1) were verified. CNC decreased the expression of GPX4 and increased the expression of HMOX1 at the mRNA and protein levels in vivo and in vitro. Collectively, these findings reveal that CNC regulates colon cancer progression via the ferroptosis pathway and could be an attractive treatment for colon cancer.

14.
Chin Herb Med ; 13(4): 502-517, 2021 Oct.
Article En | MEDLINE | ID: mdl-34659385

OBJECTIVE: To analyze the medication rules of traditional Chinese medicine (TCM) preventive oral prescriptions for COVID-19. METHODS: The preventive oral prescriptions for COVID-19 published by national and provincial health and wellness committees, administrations of TCM, medical institutions at all levels, medical masters and Chinese medicine experts were collected to establish a database, manual screening was carried out according to the inclusion and exclusion criteria, and frequency statistics, association rule analysis. The mutual information method, entropy hierarchical clustering and other methods were improved through Excel and the TCM inheritance auxiliary platform V2.5 to mine the rules and characteristics of medication. RESULTS: The selected 157 prescriptions contained a total of 130 TCMs. The top five TCMs with the highest use frequency were Glycyrrhizae Radix et Rhizoma (86), Astragali Radix (80), Lonicerea Japonicae Flos (70), Atractylodis Macrocephalae Rhizoma (62), Saposhnikoviae Radix (60). In accordance with TCM efficacy classification, most of them were medicines for qi-tonifying (279), followed by medicines for clearing heat and drying dampness (163), dispelling pathogenic wind-cold (126), resolving dampness (111), as well as dispelling pathogenic wind-heat (99). The characteristics of four-natures of the selected medicines are as follows: most of them were cold (59), followed by warm (38) and mild (21). In terms of five-taste, most of them were sweet (26) and acrid-and-bitter (24), followed by sweet-and-bitter (20), bitter (20) and acrid (15). For the meridian attribution, the five-zang organs and six-fu organs were all involved, most of them attributed to lung meridian (80), followed by stomach meridian (57) and spleen meridian (40). Based on association rule analysis, 12 commonly used medicine combinations with two or three TCMs were found. The commonly used medicinal pairs included Astragali Radix and Saposhnikoviae Radix (51), Astragali Radix and Atractylodis Macrocephalae Rhizoma (46), Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix (43), Astragali Radix and Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix (38), Forsythiae Fructus and Astragali Radix (37), and so on. In addition, 14 core combinations of medicines were obtained by complex system entropy cluster analysis, on this basis, six new prescriptions were screened out based on unsupervised entropy hierarchical clustering analysis. According to The Catalogue of Edible Traditional Chinese Medicinal Materials, Traditional Chinese Medicinal Materials for Health Food, and New Resources of Food published by National Health Commission of the People's Republic of China, there are 35 species belonging to the group of edible traditional Chinese medicinal materials, 20 species belonging to the group of new resources of food, 31 species belonging to the group of traditional Chinese medicinal materials for health food, 19.11% of the preventive oral prescriptions for COVID-19 were composed of the medicines belonging to the above three groups. Besides, there are 11 toxic species, and 24.84% of the preventive oral prescriptions for COVID-19 contained toxic TCMs. CONCLUSION: We found that invigorating qi and resolving dampness were the main treatment used to prevent for COVID-19, combined with the methods for strengthening vital energy and eliminating pathogenic factors. Most of the preventive oral prescriptions for COVID-19 were treated in lung, spleen and stomach meridians. In the process of selecting prescriptions and using TCMs to prevent for COVID-19, the safety of preventive medicines was also emphasized. And the theory of "Preventive Treatment of Disease" was embodied in these preventive oral prescriptions for COVID-19. For the prescriptions containing toxic TCMs, special attention should be paid to their safety in clinical application.

15.
Article En | MEDLINE | ID: mdl-34484402

Camellia nitidissima Chi (CNC) is a traditional Chinese medicine (TCM) with anticancer property. However, its underlying mechanisms of anti-colon cancer (CC) remain unknown. Therefore, a systematic approach is proposed in the present study to elucidate the anticancer mechanisms of CNC based on network pharmacology and experimental validation. Initially, the potential active ingredients of CNC were verified via the TCMSP database based on the oral bioavailability (OB) and drug-likeness (DL) terms. Hub targets of CNC were acquired from SwissTarget prediction and TCMSP databases, and target genes related to CC were gathered from GeneCards and OMIM databases. Cytoscape was used to establish the compound-target networks. Next, the hub target genes collected from the CNC and CC were parsed via GO and KEGG analysis. Results of GO and KEGG analysis reveal that quercetin and luteolin in CNC, VEGFA and AKT1 targets, and PI3K-Akt pathway were associated with the suppression of CC. Besides, the result of molecular docking unveils that VEGFA demonstrates the most powerful binding affinity among the binding outcomes. This finding was successfully validated using in vitro HCT116 cell model experiment. In conclusion, this study proved the usefulness of integrating network pharmacology with in vitro experiments in the elucidation of underlying molecular mechanisms of TCM.

16.
Nat Prod Res ; 35(6): 921-929, 2021 Mar.
Article En | MEDLINE | ID: mdl-31148468

Chemical investigation of Jasminum pentaneurum Hand.-Mazz led to the isolation and identification of 12 compounds, which included one new secoiridoid glycoside, 10-(3-hydroxy-4-methoxy-benzoate)-ligustroside (4), three secoiridoid glycosides (1-3), and eight phenols (5-12). All compounds were reported for the first time from this plant. Their structures were elucidated based on extensive spectroscopic data analysis, including HR-ESI-MS, UV, IR, 1 D, and 2 D NMR. The absolute configuration of the new one (4) was further elucidated by comparison of its experimental and calculated quantum chemical electronic circular dichroism (ECD) spectra. All the isolates were assayed for their inhibitory activity on four human cancer cells. Compound 11 exhibited inhibitory effects against three human cancer cells SK-MES-1, SMMC-7721 and SGC-7901 with IC50 values ranging from 83.0 to 172.0 µM.


Jasminum/chemistry , Neoplasms/pathology , Phytochemicals/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Cell Death/drug effects , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Proton Magnetic Resonance Spectroscopy
17.
Front Cell Infect Microbiol ; 10: 575271, 2020.
Article En | MEDLINE | ID: mdl-33224898

Helicobacter pylori infection induces CD4+ T differentiation cells into IFN-γ-producing Th1 cells. However, the details of mechanism underlying this process remain unclear. Notch signal pathway has been reported to regulate the differentiation of CD4+ T cells into Th1 subtype in many Th1-mediated inflammatory disorders but not yet in H. pylori infection. In the present study, the mRNA expression pattern of CD4+ T cells in H. pylori-infected patients differed from that of healthy control using Human Signal Transduction Pathway Finder RT2 Profiler PCR Array, and this alteration was associated with Notch signal pathway, as analyzed by Bioinformation. Quantitative real-time PCR showed that the mRNA expression of Notch1 and its target gene Hes-1 in CD4+ T cells of H. pylori-infected individuals increased compared with the healthy controls. In addition, the mRNA expression of Th1 master transcription factor T-bet and Th1 signature cytokine IFN-γ was both upregulated in H. pylori-infected individuals and positively correlated with Notch1 expression. The increased protein level of Notch1 and IFN-γ were also observed in H. pylori-infected individuals confirmed by flow cytometry and ELISA. In vitro, inhibition of Notch signaling decreased the mRNA expression of Notch1, Hes-1, T-bet, and IFN-γ, and reduced the protein levels of Notch1 and IFN-γ and the secretion of IFN-γ in CD4+ T cells stimulated by H. pylori. Collectively, this is the first evidence that Notch1 is upregulated and involved in the differentiation of Th1 cells during H. pylori infection, which will facilitate exploiting Notch1 as a therapeutic target for the control of H. pylori infection.


Helicobacter Infections , Helicobacter pylori , Cell Differentiation , Humans , Lymphocyte Activation , Th1 Cells
18.
J Anal Methods Chem ; 2020: 5165631, 2020.
Article En | MEDLINE | ID: mdl-32351755

Yizhi Granule (YZG) is a health food containing six traditional Chinese medicines (TCMs). It improves memory barriers in rat experiments. Here, we describe the first fast and sensitive ultraperformance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOF MS) method for analyzing YZG in plasma. We used this technique for studies in cynomolgus monkey plasma. By comparing retention time, MS, and MS/MS data of reference compounds, 70 compounds were detected in YZG. Of these, 63 were identified including 60 saponins, 2 flavones, and 1 methyl ester. There were 33 saponins, 1 flavone, and 1 methyl ester in the plasma. Next, to study the therapeutic properties of YZG, the neuroprotective effect of some of the absorbed components was evaluated using PC12 cell damage caused by the Aß 25-35 model. The results showed that 9 compounds protect PC12 cells from Aß 25-35 with cell viability (%) of 111.00 ± 8.12 (G-Rb1), 102.20 ± 4.22 (G-Rb2), 100.34 ± 6.47 (G-Rd), 102.83 ± 2.10 (G-Re), 101.68 ± 7.64 (NG-Fa), 101.19 ± 7.83 (NG-R1), 102.53 ± 0.55 (NG-R2), 106.88 ± 4.95 (gypenoside A), and 103.95 ± 4.11 (gypenoside XLIX), respectively, versus the control group (87.51 ± 6.59). These results can reveal the real pharmacodynamic basis of YZG and provide a theoretical basis for subsequent studies. It can also provide some references for the research of Alzheimer's disease.

19.
Sci Total Environ ; 720: 137279, 2020 Jun 10.
Article En | MEDLINE | ID: mdl-32145610

Altered behaviors have been reported in many marine fish following exposure to high CO2 concentrations. However, the mechanistic link between elevated CO2 and activation of brain regions in fish is unknown. Herein, we examined the relative quantification and location of c-Fos expression in marine medaka following acute (360 min) and short-term (7 d) exposure to CO2-enriched water (1000 ppm and 1800 ppm CO2). In the control and two treatment groups, pH was stable at 8.21, 7.92 and 7.64, respectively. After acute exposure to seawater acidified by enrichment with CO2, there was a clear upregulation of c-Fos protein in the medaka brain (P < 0.05). c-Fos protein expression peaked after 120 min exposure in the two treatment groups and thereafter began to decline. There were marked increases in c-Fos-labeling in the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata. After 1800 ppm CO2 exposure for 7 d, medaka showed significant preference for dark zones during the initial 2 min period. c-Fos protein expression in the ventricular and periventricular zones of the diencephalon in medaka exposed to 1000 ppm and 1800 ppm CO2 were 0.51 ± 0.10 and 1.34 ± 0.30, respectively, which were significantly higher than controls (P < 0.05). Highest doublecortin protein expression occurred in theventricular zones of the diencephalon and mesencephalon. These findings suggest that the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata of marine medaka are involved in rapid acid-base regulation. Prolonged ocean acidification may induce cell mitosis and differentiation in the adult medaka brain.


Oryzias , Animals , Brain , Carbon Dioxide , Hydrogen-Ion Concentration , Seawater , Water Pollutants, Chemical
20.
Aging (Albany NY) ; 11(19): 8347-8361, 2019 10 14.
Article En | MEDLINE | ID: mdl-31612865

Gomisin M2 isolated from Schisandra viridis A. C. Smith has potential anti-tumor effects on certain cancers, including breast cancer. However, only a few investigations have been conducted on the effects of Gomisin M2 on breast cancer stem cells (CSCs), which have the ability to self-renew and differentiate, as a possible strategy to resolve cancer cell resistance to apoptosis and to improve treatments. It is essential to investigate the effects of Gomisin M2 on breast cancer stem cells (BCSCs). In this study, we enriched breast cancer stem cells with CD44+/CD24- from MDA-MB-231 and HCC1806 cells through magnetic-activated cell sorting and cultured these in serum-free medium. The ability of Gomisin M2 to kill breast cancer stem cells was evaluated in vitro and in vivo. Gomisin M2 significantly inhibited the proliferation of the triple-negative breast cancer cell lines and mammosphere formation in breast CSCs and downregulated the Wnt/ß-catenin self-renewal pathway. Moreover, Gomisin M2 induced apoptosis and blocked the mitochondrial membrane potential of BCSCs. Gomisin M2 suppressed the proliferation of MDA-MB-231 and HCC1806 xenografts in zebrafish. Together, these findings suggest that the anti-BCSC activity of Gomisin M2 could become a promising starting point for the discovery of novel BCSC-targeting drugs.


Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Breast Neoplasms , Cell Proliferation/drug effects , Neoplastic Stem Cells/metabolism , Schisandra/chemistry , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Zebrafish
...