Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(12): 21594-21605, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859509

RESUMEN

Recent progress in metagratings highlights the promise of high-performance wavefront engineering devices, notably for their exterior capability to steer beams with near-unitary efficiency. However, the narrow operating bandwidth of conventional metagratings remains a significant limitation. Here, we propose and experimentally demonstrate a dual-layer metagrating, incorporating enhanced interlayer couplings to realize high-efficiency and broadband anomalous reflection within the microwave frequency band. The metagrating facilitated by both intralayer and interlayer couplings is designed through the combination of eigenmode expansion (EME) algorithm and particle swarm optimization (PSO) to significantly streamline the computational process. Our metagrating demonstrates the capacity to reroute a normally incident wave to +1 order diffraction direction across a broad spectrum, achieving an average efficiency approximately 90% within the 14.7 to 18 GHz range. This study may pave the way for future applications in sophisticated beam manipulations, including spatial dispersive devices, by harnessing the intricate dynamics of multi-layer metagratings with complex interlayer and intralayer interactions.

2.
Opt Express ; 32(1): 949-958, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175115

RESUMEN

Dichroic beam splitters are widely used in multi wavelength laser systems, and their scattering loss affects the signal-to-noise ratio and performance of the system. In this study, we investigate forward and backward scattering induced by nodular defects in a dichroic beam splitter. The seed size, seed position, and geometric constants of nodules exhibited distinct effects on the scattering characteristics. The modeling and simulation provide valuable insights into the relationship between the structural parameters of nodules and their scattering characteristics, offering practical guidance for various high-performance optical multilayer coatings and systems.

3.
J Gynecol Obstet Hum Reprod ; 53(2): 102726, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219858

RESUMEN

The progress achieved in anticancer therapy in recent years has been paralleled by an increase in the survival of women with cancer globally. Nonetheless, the gonadotoxic impact of anticancer drugs has led to ovarian failure in treated women. While there are documented cases of successful ovarian tissue transplants resulting in restored fertility and childbirth, challenges persist, including suboptimal functional recovery and limited graft lifespan. Melatonin, an inert hormone primarily secreted by the mammalian pineal gland, exhibits diverse physiological functions, including antioxidative, anti-inflammatory, anti-apoptotic, and angiogenesis-regulating properties. Consequently, researchers have explored melatonin as a modulator to enhance graft function recovery in ovarian transplantation experiments, yielding promising outcomes. This review examines the relevant literature, consolidating findings that underscore the positive effects of melatonin in safeguarding the morphology and structure of transplanted ovarian tissues, facilitating graft function recovery, and extending lifespan. The amassed evidence supports the consideration of melatonin as a prospective protective agent for human ovarian tissue transplantation in the future.


Asunto(s)
Melatonina , Animales , Femenino , Humanos , Antioxidantes/farmacología , Mamíferos , Melatonina/farmacología , Ovario , Estudios Prospectivos
4.
Appl Opt ; 62(7): B19-B24, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132882

RESUMEN

Diffractive optical elements (DOEs) play an important role in modern optical applications such as spectral and imaging systems, but it is challenging to balance the diffraction efficiency with the working bandwidth. The core issue is controlling the broadband dispersion of all phase units to achieve achromatic 2π-phase modulation in the broadband domain. Here, we demonstrate broadband DOEs utilizing multilayer subwavelength structures with different materials, making it possible to freely control the phase and phase dispersion of the structural units on a much larger scale than monolayer structures. The desired dispersion-control abilities arose due to a dispersion-cooperation mechanism and vertical mode-coupling effects between the top and bottom layers. An infrared design comprised of two vertically concatenated T i O 2 and Si nanoantennas separated by a S i O 2 dielectric spacer layer was demonstrated. It showed an average efficiency of over 70% in the three-octave bandwidth. This work shows enormous value for broadband optical systems with DOEs such as spectral imaging and augmented reality.

5.
Microvasc Res ; 146: 104468, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513147

RESUMEN

BACKGROUND: Diabetes exacerbates vascular injury by triggering endothelial dysfunction. Endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) both play major roles in endothelial dysfunction. However, effects of hypoglycaemia, the main complication of the insulin therapy to the glycemic control in diabetes, on eNOS activity and iNOS expression, and underlying mechanisms in diabetes remain unknown. Hence, we aimed to determine the effects of hypoglycaemia on eNOS activity and iNOS expression in different arterial beds of diabetic rats. METHODS: Sprague-Dawley rats were subjected to Streptozotocin (STZ) combined with high fat diet (HFD) to induce diabetes and then received insulin injection to attain acute and recurrent hypoglycaemia. Immunoblotting was used to analyse the phosphorylation and O-glycosylation status of eNOS and iNOS level from thoracic aorta and mesenteric artery tissue. Indicators of oxidative stress from plasm were determined, and endothelial-dependent vasodilation was detected via wire myograph system. RESULTS: Hypoglycaemia was associated with a marked increase in eNOS O-GlcNAcylation and decrease in Serine (Ser)-1177 phosphorylation from thoracic aortas and mesenteric arteries. Moreover, hypoglycaemia resulted in elevated phosphorylation of eNOS at Threonine (Thr)-495 site in mesenteric arteries. Besides, changes in these post-translational modifications were associated with increased O-GlcNAc transferase (OGT), decreased phosphorylation of Akt at Ser-473, and increased protein kinase C α subunit (PKCα). iNOS expression was induced in hypoglycaemia. Furthermore, endothelial-dependent vasodilation was impaired under insulin-induced hypoglycaemia, and further in recurrent hypoglycaemia. CONCLUSIONS: Conclusively, these findings strongly indicate that hypoglycaemia-dependent vascular dysfunction in diabetes is mediated through altered eNOS activity and iNOS expression. Therefore, this implies that therapeutic modulation of eNOS activity and iNOS expression in diabetics under intensive glucose control may prevent and treat adverse cardiovascular events.


Asunto(s)
Diabetes Mellitus Experimental , Hipoglucemia , Insulinas , Enfermedades Vasculares , Ratas , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Vasodilatación , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas Sprague-Dawley , Endotelio Vascular/metabolismo , Fosforilación , Insulinas/metabolismo , Insulinas/farmacología , Insulinas/uso terapéutico , Óxido Nítrico/metabolismo
6.
Opt Express ; 30(20): 36863-36872, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258607

RESUMEN

Free-space orbital angular momentum (OAM) communication is considered as one of the potential alternative on-chip optical interconnect solutions. The number of OAM modes determines the capacity of high-speed communication. However, existing integrated vortex beam emitters have a constraint relationship between the number of OAM modes and the emitter size, rendering it difficult to emit more OAM modes with a small-sized emitter. In view of the above, this study proposes an on-chip ultracompact multimode vortex beam emitter based on vertical modes, which permits more OAM modes without requiring an increase in the size of the emitter. Vertical modes in large-aspect-ratio waveguides are pointed out to enable multimode microrings with small radii because high-order vertical modes can maintain almost the same horizontal wave vector as that of the fundamental mode. Four-mode and five-mode vortex beam emitters with the same radius of 1.5 µm are designed and the effectiveness of these emitters is verified through simulation. Furthermore, a high-efficiency and low-crosstalk approach for high-order vertical mode coupling by varying the waveguide height is presented. This research not only promotes further integration of on-chip optical interconnection, but also provides a new strategy for optical waveguide mode selection in photonic integrated circuits design.

7.
Micromachines (Basel) ; 13(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36014126

RESUMEN

Optical analog computing has natural advantages of parallel computation, high speed and low energy consumption over traditional digital computing. To date, research in the field of on-chip optical analog computing has mainly focused on classical mathematical operations. Despite the advantages of quantum computing, on-chip quantum analog devices based on metasurfaces have not been demonstrated so far. In this work, based on a silicon-on-insulator (SOI) platform, we illustrated an on-chip quantum searcher with a characteristic size of 60 × 20 µm2. We applied classical waves to simulate the quantum search algorithm based on the superposition principle and interference effect, while combining it with an on-chip metasurface to realize modulation capability. The marked items are found when the incident waves are focused on the marked positions, which is precisely the same as the efficiency of the quantum search algorithm. The proposed on-chip quantum searcher facilitates the miniaturization and integration of wave-based signal processing systems.

8.
Oxid Med Cell Longev ; 2022: 7812407, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35915611

RESUMEN

Background: Hypoglycemia is a dangerous side effect of intensive glucose control in diabetes. Even though it leads to adverse cardiovascular events, the effects of hypoglycemia on vascular biology in diabetes have not been adequately studied. Methods: Aged Sprague-Dawley rats were fed a high-fat diet and given streptozotocin to induce type 2 diabetes mellitus (T2DM). Acute and recurrent hypoglycemia were then induced by glucose via insulin administration. Vascular function, oxidative stress, and pyroptosis levels in aortic tissue were assessed by physiological and biochemical methods. Results: Hypoglycemia was associated with a marked decrease in vascular function, elevated oxidative stress, and elevated pyroptosis levels in the thoracic aorta. The changes in oxidative stress and pyroptosis were greater in rats with recurrent hypoglycemia than in those with acute hypoglycemia. Conclusions: Hypoglycemia impaired vascular function in aged rats with T2DM by inducing pyroptosis. The extent of injury increased with the duration of blood glucose fluctuation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Animales , Glucemia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemia/complicaciones , Insulina , Piroptosis , Ratas , Ratas Sprague-Dawley
9.
Micromachines (Basel) ; 13(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35334766

RESUMEN

Photonic integrated circuits (PICs) have garnered increasing attention because of their high efficiency in information processing. Recently, lithium niobate on insulator (LNOI) has become a new platform for PICs with excellent properties. Several tunable devices such as on-chip tunable devices that utilize the electric-optic effect of LN have been reported. However, an on-chip electrically tunable beam modulator that can focus or deflect the wave has not yet been developed. In this study, we designed an electrically tunable LNOI metasurface for on-chip optical beam manipulation. With a carefully designed local phase profile, we realized the tunable focusing and reflection functions on the chip. As the bias voltage varies, the focusing length can be shifted up to 19.9 µm (~13λ), whereas the focusing efficiency remains greater than 72%. A continuously tunable deflection can also be achieved efficiently within a range of 0-45°. The beam modulator enhances the ability to manipulate light on LNOI chips, which is expected to promote the development of integrated on-chip photonics.

10.
ACS Omega ; 7(1): 1437-1443, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036805

RESUMEN

InN/InGaN quantum dots (QDs) are introduced as an efficient photoanode for a novel abiotic one-compartment photofuel cell (PFC) with a Pt cathode and glucose as a biofuel. Due to the high catalytic activity and selectivity of the InN/InGaN QDs toward oxidation reactions, the PFC operates without a membrane under physiologically mild conditions at medium to low glucose concentrations with a noble-metal-free photoanode. A relatively high short-circuit photocurrent density of 0.56 mA/cm2 and a peak output power density of 0.22 mW/cm2 are achieved under 1 sun illumination for a 0.1 M glucose concentration with optimized InN/InGaN QDs of the right size. The super-linear dependence of the short-circuit photocurrent density and the output power density as a function of the logarithmic glucose concentration makes the PFC well suited for sensing, covering the 4-6 mM range of glucose concentration in blood under normal conditions with good selectivity. No degradation of the PFC operation over time is observed.

11.
Acta Pharm ; 72(4): 483-507, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651365

RESUMEN

In this study Ginkgo biloba leaves (GBL) decoction and commercial capsules were digested using an in vitro model. Thirty-six active compounds were identified and quantified by HPLC-ESI-MS analysis based on the MS/MS patterns (precursor ions and product ions) and retention times, in comparison with reference standards. Most compounds in GBL showed a significant decrease during intestinal digestion, with an exception of vanillic acid and biflavonoids. Bioaccessibility values of chemical compositions varied between decoction and capsules samples. Also, significant reductions of total flavonoids and total phenolic content was observed after in vitro digestion. Both, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazo-line-6-sulfonic acid (ABTS) scavenging capacity decreased after gastric digestion, but increased during intestinal digestion. Nevertheless, different behaviour was observed in reducing antioxidant power (FRAP) assay. Compared to the pH of digestion, the influence of digestive enzymes on the chemical composition and antioxidant activity of GBL was relatively minor. Overall, these results may help provide a valid foundation for further investigations on bioactive compounds and the pharmacodynamics of GBL.


Asunto(s)
Antioxidantes , Ginkgo biloba , Antioxidantes/química , Ginkgo biloba/química , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología , Flavonoides/farmacología , Digestión
12.
Opt Express ; 29(2): 2669-2678, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726458

RESUMEN

Broadband multilayer dielectric gratings (MDGs) with rectangular HfO2 grating profile were realized for the first time using a novel fabrication process that combines laser interference lithography, nanoimprint, atomic layer deposition and reactive ion-beam etching. The laser-induced damage initiating at the grating ridge was mitigated for two reasons. First, the rectangular grating profile exhibits the minimum electric-field intensity (EFI) enhancement inside the grating pillar compared to other trapezoidal profiles. Second, our etching process did not create nano-absorbing defects at the edge of the HfO2 grating where the peak EFI locates, which is unavoidable in traditional fabrication process. The fabricated MDGs showed a high laser induced damage threshold of 0.59J/cm2 for a Ti-sapphire laser with pulse width of 40 fs and an excellent broadband diffraction spectrum with 95% efficiency over 150 nm in TE polarization.

13.
Appl Opt ; 59(5): A128-A134, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32225364

RESUMEN

A comparative study was performed to investigate how etching methods and parameters affect the properties of SiO2 and HfO2 coatings. SiO2 and HfO2 single layers were prepared by electron-beam evaporation (EBE), ion-beam assisted deposition (IAD), and ion-beam sputtering (IBS). Then, ion-beam etching (IBE), reactive ion etching (RIE), and inductively coupled plasma etching (ICPE) were used to study the influence of ion bombardment energy and chemical reaction on the etching rates and properties of the prepared SiO2 and HfO2 single layers. For SiO2 coatings, chemical reaction plays a dominant role in determining the etching rates, so ICPE that has the strongest CHF3 plasma shows the highest etching rate. Moreover, all three etching methods have barely any influence on the properties of SiO2 coatings. For HfO2 coatings, the etching rates are more dependent on the ion bombardment energy, although the chemical reaction using CHF3 plasma also helps to increase the etching rates to some extent. To our surprise, the ion bombardment with energy as high as 900 V does not change the amorphous microstructure or crystalline states of prepared HfO2 coatings. However, the high-energy ion bombardment in IBE significantly increases the absorption of the HfO2 coatings prepared by all deposition techniques and decreases their laser damage resistance to different extents.

14.
Sci Rep ; 9(1): 14489, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601966

RESUMEN

We introduce a novel concept for the design of functional surfaces of materials: Spatial surface charge engineering. We exploit the concept for an all-solid-state, epitaxial InN/InGaN-on-Si reference electrode to replace the inconvenient liquid-filled reference electrodes, such as Ag/AgCl. Reference electrodes are universal components of electrochemical sensors, ubiquitous in electrochemistry to set a constant potential. For subtle interrelation of structure design, surface morphology and the unique surface charge properties of InGaN, the reference electrode has less than 10 mV/decade sensitivity over a wide concentration range, evaluated for KCl aqueous solutions and less than 2 mV/hour long-time drift over 12 hours. Key is a nanoscale charge balanced surface for the right InGaN composition, InN amount and InGaN surface morphology, depending on growth conditions and layer thickness, which is underpinned by the surface potential measured by Kelvin probe force microscopy. When paired with the InN/InGaN quantum dot sensing electrode with super-Nernstian sensitivity, where only structure design and surface morphology are changed, this completes an all-InGaN-based electrochemical sensor with unprecedented performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...