Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Article En | MEDLINE | ID: mdl-38061485

BACKGROUND: Methamphetamine (METH) is a highly addictive stimulant that has become one of the top five risk substances cause deaths from substance abuse. METH exposure increases the risk of neurodegenerative disease (ND), such as Parkinson's disease (PD), leading to disability and death. Activation of reactive astrocytes is an essential factor in neurodegeneration, and their complex role in METH exposure remains unclear. This study explored the role of reactive astrocyte overactivation in neurodegeneration after METH exposure. METHODS: METH bulk RNA sequencing data (GSE107015 and GSE98793) and single-cell RNA sequencing data (GSE119861) were obtained from the GEO database. We performed immune infiltration analysis on the bulk RNA data. After cell clustering using the single-cell RNA data, astrocytes were extracted for downstream analysis. Differentially expressed genes (DEGs) were identified from the bulk and single-cell RNA sequencing datasets, and GO, KEGG, and GSEA pathway analyses were performed. The PPI network and random forest methods were performed on the overlapping genes of the DEGs to screen hub genes. To explore the common ground between METH exposure and neurodegenerative diseases, we applied a random forest algorithm to PD chip data (GSE99039 and GSE72267) to establish a diagnostic model using the hub genes in METH. New object recognition and the Morris water maze were used to examine cognitive function in mice exposed to METH for 14 days in vivo. Astrocytes were cocultured with neurons for the detection of intercellular crosstalk. RESULTS: DEGs in the METH group significantly enriched pathways related to NDs, inflammation, and the NF-κB signaling pathway. Immune infiltration analysis revealed significantly increased infiltration of monocytes, T cells, and NK cells and decreased infiltration of neutrophils in the METH group. An intersection of 44 hub genes was screened based on the PPI network and random forest algorithm. These genes suggest that there might be similar pathogenesis between METH exposure and PD. METH exposure resulted in learning memory impairment, hippocampal astrocyte activation, and upregulation of NF-κB expression in mice. Activation of reactive astrocytes cocultured with neurons causes neural damage. CONCLUSIONS: This study explored the crosstalk between astrocytes and neurons in METH exposure, providing a potential pathogenesis to explore the altered immune microenvironment involving reactive astrocytes after METH exposure.


Methamphetamine , Neurodegenerative Diseases , Animals , Mice , Methamphetamine/adverse effects , NF-kappa B/metabolism , Astrocytes/metabolism , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Signal Transduction , RNA , Computational Biology
2.
Brain Behav Immun ; 106: 247-261, 2022 11.
Article En | MEDLINE | ID: mdl-36089218

The α-synuclein (α-syn) is involved in methamphetamine (METH)-induced neurotoxicity. Neurons can transfer excessive α-syn to neighboring neurons and glial cells. The effects of α-syn aggregation in astrocytes after METH exposure on the blood-brain barrier (BBB) remains unclear. Our previous study demonstrated that nuclear receptor-related protein 1 (Nurr1), a member of the nuclear receptor family widely expressed in the brain, was involved in the process of METH-induced α-syn accumulated in astrocytes to activate neuroinflammation. The role Nurr1 plays in astrocyte-mediated neuroinflammation, which results in BBB injury induced by METH, remains uncertain. This study found that METH up-regulated α-syn expression in neurons extended to astrocytes, thereby eliciting astrocyte activation, increasing and decreasing IL-1ß, IL-6, TNF-α, and GDNF levels by down-regulating Nurr1 expression, and ultimately damaging the BBB. Specifically, the permeability of BBB to Evans blue and sodium fluorescein (NaF) increased; IgG deposits in the brain parenchyma increased; the Claudin5, Occludin, and PDGFRß levels decreased. Several ultrastructural pathological changes occurred in the BBB, such as abnormal cerebral microvascular diameter, astrocyte end-foot swelling, decreased pericyte coverage, and loss of tight junctions. However, knockout or inhibition of α-syn or astrocyte-specific overexpression of Nurr1 partially alleviated these symptoms and BBB injury. Moreover, the in vitro experiments confirmed that METH increased α-syn level in the primary cultured neurons, which could be further transferred to primary cultured astrocytes, resulting in decreased Nurr1 levels. The decreased Nurr1 levels mediated the increase of IL-1ß, IL-6, and TNF-α, and the decrease of GDNF, thereby changing the permeability to NaF, transendothelial electrical resistance, and Claudin5 and Occludin levels of primary cultured brain microvascular endothelial cells. Based on our findings, we proposed a new mechanism to elucidate METH-induced BBB injury and presented α-syn and Nurr1 as promising drug intervention targets to reduce BBB injury and resulting neurotoxicity in METH abusers.


Central Nervous System Stimulants , Methamphetamine , Neurotoxicity Syndromes , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Central Nervous System Stimulants/pharmacology , Endothelial Cells/metabolism , Evans Blue/metabolism , Evans Blue/pharmacology , Fluorescein/metabolism , Fluorescein/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Humans , Immunoglobulin G , Interleukin-6/metabolism , Methamphetamine/metabolism , Neuroinflammatory Diseases , Neurons/metabolism , Neurotoxicity Syndromes/metabolism , Occludin/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Tumor Necrosis Factor-alpha/metabolism , alpha-Synuclein/metabolism
3.
Forensic Sci Int Genet ; 59: 102705, 2022 07.
Article En | MEDLINE | ID: mdl-35462161

BACKGROUNDS: Y-chromosomal haplotypes based on Y-short tandem repeats (STRs) and Y-single nucleotide polymorphisms/insertion and deletion polymorphisms (SNPs/InDels) are used to characterize paternal lineages of unknown male trace donors. However, Y-chromosomal genetic markers are not currently sufficient for precise individual identification. Microhaplotype (MH), generally < 200 bp on autosomes and consisting of two or more SNPs, was recently introduced in forensic genetics with the development of massive parallel sequencing technology and may facilitate identification and DNA mixture deconvolution. Therefore, combining the two kinds of genetic markers may be beneficial in many forensic scenarios, especially crime scenes with male suspects, such as sexual assault cases. METHODS: In the present study, we developed a novel MPS-based panel, Microhaplotype and Y-SNP/STR (MY), by multiplex PCR and 150-bp paired-end sequencing, including 114 Y-SNPs (twelve dominant Y-DNA haplogroups), 45 Y-STRs (N-1 stutter < 0.09; estimated mutation rate < 5 × 10-3), and 22 MHs (allele coverage ratio > 0.91; pairwise distance > 10 Mb). Additionally, MY system-based genotype pattern recognition (GPR), a regression-based method to identify the genotype pattern for each MH locus, is proposed for two-person DNA mixture deconvolution. We integrated 26 two-person genotype combinations into nine genotype patterns and validated the application range of GPR based on DNA profiles of ten sets of simulated male-male DNA mixtures (1:10-1:2). RESULTS: The effective number of alleles (Ae) ranged from 3.62 to 14.72, with an average of 7.17, in 100 Chinese Guangdong Han individuals. The cumulative discrimination power was 1-5.00 × 10-31, and the cumulative power of exclusion was 1-5.00 × 10-8 and 1-4.85 × 10-12 for duo and trio paternity testing, respectively. Furthermore, the actual mixing ratio-depth of coverage (DoC) ratio (RDoC) regression relationships were established for different genetic markers and genotype patterns. In five overlapping areas, genotype differentiation of the major and minor contributors required likelihood ratio methods. In nonoverlapping areas, the genotype pattern could be recognized by comparing the observed RDoC and RDoC ranges. CONCLUSION: The GPR can be used to deconvolute two-person DNA mixtures (application range: 1:10-1:2) for individual identification.


DNA Fingerprinting , Polymorphism, Single Nucleotide , DNA/analysis , DNA/genetics , DNA Fingerprinting/methods , Genetic Markers , Genotype , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Male , Microsatellite Repeats
4.
Oxid Med Cell Longev ; 2022: 8400876, 2022.
Article En | MEDLINE | ID: mdl-35387263

Chronic and long-term methamphetamine (METH) abuse is bound to cause damages to multiple organs and systems, especially the central nervous system (CNS). Icariside II (ICS), a type of flavonoid and one of the main active ingredients of the traditional Chinese medicine Epimedium, exhibits a variety of biological and pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. However, whether ICS could protect against METH-induced neurotoxicity remains unknown. Based on a chronic METH abuse mouse model, we detected the neurotoxicity after METH exposure and determined the intervention effect of ICS and the potential mechanism of action. Here, we found that METH could trigger neurotoxicity, which was characterized by loss of dopaminergic neurons, depletion of dopamine (DA), activation of glial cells, upregulation of α-synuclein (α-syn), abnormal dendritic spine plasticity, and dysfunction of motor coordination and balance. ICS treatment, however, alleviated the above-mentioned neurotoxicity elicited by METH. Our data also indicated that when ICS combated METH-induced neurotoxicity, it was accompanied by partial correction of the abnormal Kelch 2 like ECH2 associated protein 1 (Keap1)-nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and oxidative stress response. In the presence of ML385, an inhibitor of Nrf2, ICS failed to activate the Nrf2-related protein expression and reduce the oxidative stress response. More importantly, ICS could not attenuate METH-induced dopaminergic neurotoxicity and behavioral damage when the Nrf2 was inhibited, suggesting that the neuroprotective effect of ICS on METH-induced neurotoxicity was dependent on activating the Keap1-Nrf2 pathway. Although further research is needed to dig deeper into the actual molecular targets of ICS, it is undeniable that the current results imply the potential value of ICS to reduce the neurotoxicity of METH abusers.


Methamphetamine , Neurotoxicity Syndromes , Animals , Mice , Dopamine/metabolism , Flavonoids/therapeutic use , Kelch-Like ECH-Associated Protein 1/metabolism , Methamphetamine/toxicity , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , NF-E2-Related Factor 2/metabolism
5.
Biochem Pharmacol ; 192: 114740, 2021 10.
Article En | MEDLINE | ID: mdl-34419429

Psychological stress impairs neuronal structure and function and leads to emotional disorders, but the underlying mechanisms have not yet been fully elucidated. The amygdala is closely correlated with emotional regulation. In the present study, we analyzed whether the amygdala plasticity is regulated by psychological stress and explored their regulatory mechanism. We established a mouse psychological stress model using an improved communication box, wherein mice were exposed to chronic fear and avoided physical stress interference. After the 14-day psychological stress paradigm, mice exhibited significantly increased depressive behaviors (decreased sucrose consumption in the sucrose preference test and longer immobility time in the forced swimming test). HPLC, ELISA, and molecular and morphological evidences showed that psychological stress increased the content of glutamate and the expression of glutamatergic neurons, upregulated the content of the stress hormone corticosterone, and activated the CREB/BDNF pathway in the amygdala. Furthermore, psychological stress induced an increased density of dendritic spines and LTD impairment in the amygdala. Importantly, virus-mediated silencing of BDNF in the basolateral amygdala (BLA) nuclei reversed the depression-like behaviors and the increase of synaptic GluA1 and its phosphorylation at Ser831 and Ser845 sites in psychologically stressed mice. This process was likely achieved through mTOR signaling activation. Finally, we treated primary amygdala neurons with corticosterone to mimic psychological stress; corticosterone-induced upregulation of GluA1 was prevented by BDNF and mTOR antagonists. Thus, activation of the CREB/BDNF pathway in the amygdala following psychological stress upregulates synaptic GluA1 via mTOR signaling, which dysregulates synaptic plasticity of the amygdala, eventually promoting depression.


Amygdala/metabolism , Brain-Derived Neurotrophic Factor/biosynthesis , Depression/metabolism , Receptors, AMPA/biosynthesis , Stress, Psychological/metabolism , Up-Regulation/physiology , Animals , Brain-Derived Neurotrophic Factor/antagonists & inhibitors , Cells, Cultured , Depression/psychology , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Stress, Psychological/psychology
6.
Front Genet ; 12: 690504, 2021.
Article En | MEDLINE | ID: mdl-34220963

Maoming is located in the southwest region of Guangdong Province and is the cradle of Gaoliang culture, which is the representative branch of Lingnan cultures. Historical records showed that the amalgamations between Gaoliang aborigines and distinct ethnic minorities had some influences on the shaping of Gaoliang culture, especially for the local Tai-kadai language-speaking Baiyue and Han Chinese from Central China. However, there is still no exact genetic evidence for the influences on the genetic pool of Maoming Han, and the genetic relationships between Maoming Han and other Chinese populations are still unclear. Hence, in order to get a better understanding of the paternal genetic structures and characterize the forensic features of 27 Y-chromosomal short tandem repeats (Y-STRs) in Han Chinese from Guangdong Maoming, we firstly applied the AmpFLSTR® Yfiler® Plus PCR Amplification Kit (Thermo Fisher Scientific, Waltham, MA, United States) to genotype the haplotypes in 431 Han males residing in Maoming. A total of 263 different alleles were determined across all 27 Y-STRs with the corresponding allelic frequencies from 0.0004 to 0.7401, and the range of genetic diversity (GD) was 0.4027 (DYS391) to 0.9596 (DYS385a/b). In the first batch of 27 Yfiler data in Maoming Han, 417 distinct haplotypes were discovered, and nine off-ladder alleles were identified at six Y-STRs; in addition, no copy number variant or null allele was detected. The overall haplotype diversity (HD) and discrimination capacity (DC) of 27 Yfiler were 0.9997 and 0.9675, respectively, which demonstrated that the 6-dye and 27-plex system has sufficient system effectiveness for forensic applications in Maoming Han. What is more, the phylogenetic analyses indicated that Maoming Han, which is a Southern Han Chinese population, has a close relationship with Meizhou Kejia, which uncovered that the role of the gene flows from surrounding Han populations in shaping the genetic pool of Maoming Han cannot be ignored. From the perspectives of genetics, linguistics, and geographies, the genetic structures of Han populations correspond to the patterns of the geographical-scale spatial distributions and the relationships of language families. Nevertheless, no exact genetic evidence supports the intimate relationships between Maoming Han and Tai-Kadai language-speaking populations and Han populations of Central Plains in the present study.

7.
Front Genet ; 12: 676917, 2021.
Article En | MEDLINE | ID: mdl-34108995

Guangdong province is situated in the south of China with a population size of 113.46 million. Hakka is officially recognized as a branch of Han Chinese, and She is the official minority group in mainland China. There are approximately 25 million Hakka people who mainly live in the East and North regions of China, while there are only 0.7 million She people. The genetic characterization and forensic parameters of these two groups are poorly defined (She) or still need to be explored (Hakka). In this study, we have genotyped 475 unrelated Guangdong males (260 Hakka and 215 She) with Promega PowerPlex® Y23 System. A total of 176 and 155 different alleles were observed across all 23 Y-STRs for Guangdong Hakka (with a range of allele frequencies from 0.0038 to 0.7423) and Guangdong She (0.0047-0.8605), respectively. The gene diversity ranged from 0.4877 to 0.9671 (Guangdong Hakka) and 0.3277-0.9526 (Guangdong She), while the haplotype diversities were 0.9994 and 0.9939 for Guangdong Hakka and Guangdong She, with discrimination capacity values of 0.8885 and 0.5674, respectively. With reference to geographical and linguistic scales, the phylogenetic analyses showed us that Guangdong Hakka has a close relationship with Southern Han, and the genetic pool of Guangdong Hakka was influenced by surrounding Han populations. The predominant haplogroups of the Guangdong She group were O2-M122 and O2a2a1a2-M7, while Guangdong She clustered with other Tibeto-Burman language-speaking populations (Guizhou Tujia and Hunan Tujia), which shows us that the Guangdong She group is one of the branches of Tibeto-Burman populations and the Huonie dialect of She languages may be a branch of Tibeto-Burman language families.

8.
Leg Med (Tokyo) ; 52: 101910, 2021 Sep.
Article En | MEDLINE | ID: mdl-34052680

Traditional autopsy and microscopic examination of pathological sections are the "gold standard" for the cause of death diagnosis. However, in some special cases, such as the deaths caused by bacterial infections, pathological sections are not always sufficient to provide convincing evidences for determining the causes of death. In recent years, with the development of Next Generation Sequencing (NGS), clinical medicine has already introduced it into the diagnosis of difficult diseases, which is rare in forensic pathological diagnoses. Here, we applied an NGS-based method combined with bacterial culture to examine a special case in which the deceased was suspected of having suffered from nosocomial infections. Results of the NGS and bacterial culture showed that Enterococcus and Acinetobacter baumannii, which are the most common bacteria causing nosocomial infections, were abundant in blood and hydropericardium of the deceased. Combining medical records and the results of the dissections, we proved that the death was actually caused by MODS which was the adverse consequence of nosocomial infections. In this case, the combination of NGS and bacterial culture was used to identify the pathogen which had caused the death. The results of NGS not only shorten the period of diagnosis, but also greatly increase the credibility of traditional anatomy and results of bacterial culture, which is expected to be further applied for forensic practices in the near future.


Cross Infection , Autopsy , Bacteria/genetics , Cross Infection/diagnosis , Forensic Medicine , High-Throughput Nucleotide Sequencing , Humans
9.
Front Bioeng Biotechnol ; 9: 819991, 2021.
Article En | MEDLINE | ID: mdl-35141217

Epigenetic clock, a highly accurate age estimator based on DNA methylation (DNAm) level, is the basis for predicting mortality/morbidity and elucidating the molecular mechanism of aging, which is of great significance in forensics, justice, and social life. Herein, we integrated machine learning (ML) algorithms to construct blood epigenetic clock in Southern Han Chinese (CHS) for chronological age prediction. The correlation coefficient (r) meta-analyses of 7,084 individuals were firstly implemented to select five genes (ELOVL2, C1orf132, TRIM59, FHL2, and KLF14) from a candidate set of nine age-associated DNAm biomarkers. The DNAm-based profiles of the CHS cohort (240 blood samples differing in age from 1 to 81 years) were generated by the bisulfite targeted amplicon pyrosequencing (BTA-pseq) from 34 cytosine-phosphate-guanine sites (CpGs) of five selected genes, revealing that the methylation levels at different CpGs exhibit population specificity. Furthermore, we established and evaluated four chronological age prediction models using distinct ML algorithms: stepwise regression (SR), support vector regression (SVR-eps and SVR-nu), and random forest regression (RFR). The median absolute deviation (MAD) values increased with chronological age, especially in the 61-81 age category. No apparent gender effect was found in different ML models of the CHS cohort (all p > 0.05). The MAD values were 2.97, 2.22, 2.19, and 1.29 years for SR, SVR-eps, SVR-nu, and RFR in the CHS cohort, respectively. Eventually, compared to the MAD range of the meta cohort (2.53-5.07 years), a promising RFR model (ntree = 500 and mtry = 8) was optimized with an MAD of 1.15 years in the 1-60 age categories of the CHS cohort, which could be regarded as a robust epigenetic clock in blood for age-related issues.

10.
Front Genet ; 12: 744645, 2021.
Article En | MEDLINE | ID: mdl-35082827

Insertion/deletion (InDel) polymorphisms, combined desirable characteristics of both short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs), are considerable potential in the fields of forensic practices and population genetics. However, most commercial InDel kits designed based on non-Asians limited extensive forensic applications in East Asian (EAS) populations. Recently, a novel 6-dye direct and multiplex PCR-CE-based typing system was designed on the basis of genome-wide EAS population data, which could amplify 60 molecular genetic markers, consisting of 57 autosomal InDels (A-InDels), 2 Y-chromosomal InDels (Y-InDels), and Amelogenin in a single PCR reaction and detect by capillary electrophoresis, simultaneously. In the present study, the DNA profiles of 279 unrelated individuals from the Hainan Li group were generated by the novel typing system. In addition, we collected two A-InDel sets to evaluate the forensic performances of the novel system in the 1,000 Genomes Project (1KG) populations and Hainan Li group. For the Universal A-InDel set (UAIS, containing 44 A-InDels) the cumulative power of discrimination (CPD) ranged from 1-1.03 × 10-14 to 1-1.27 × 10-18, and the cumulative power of exclusion (CPE) varied from 0.993634 to 0.999908 in the 1KG populations. For the East Asia-based A-InDel set (EAIS, containing 57 A-InDels) the CPD spanned from 1-1.32 × 10-23 to 1-9.42 × 10-24, and the CPE ranged from 0.999965 to 0.999997. In the Hainan Li group, the average heterozygote (He) was 0.4666 (0.2366-0.5448), and the polymorphism information content (PIC) spanned from 0.2116 to 0.3750 (mean PIC: 0.3563 ± 0.0291). In total, the CPD and CPE of 57 A-InDels were 1-1.32 × 10-23 and 0.999965, respectively. Consequently, the novel 6-dye direct and multiplex PCR-CE-based typing system could be considered as the reliable and robust tool for human identification and intercontinental population differentiation, and supplied additional information for kinship analysis in the 1KG populations and Hainan Li group.

...