Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 176: 116936, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878685

RESUMEN

Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.


Asunto(s)
Cardiolipinas , Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Animales , Cardiolipinas/metabolismo , Fosfolipasas A2 Secretoras/metabolismo
2.
Cell Biol Toxicol ; 40(1): 17, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509409

RESUMEN

Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.


Asunto(s)
Cardiomiopatías , Enfermedades Cardiovasculares , Ferroptosis , Infarto del Miocardio , Humanos , Muerte Celular
3.
Circulation ; 149(9): 684-706, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-37994595

RESUMEN

BACKGROUND: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS: The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS: Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS: Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Células Madre Pluripotentes Inducidas , Ubiquitina Tiolesterasa , Animales , Humanos , Ratones , Ratas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Lípidos , Ratones Noqueados , Miocitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Estreptozocina/metabolismo , Estreptozocina/uso terapéutico , Ubiquitina Tiolesterasa/análisis , Ubiquitina Tiolesterasa/metabolismo
4.
J Mol Cell Cardiol ; 186: 81-93, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995517

RESUMEN

AIM: Doxorubicin-induced cardiotoxicity (DIC) is an increasing problem, occurring in many cancer patients receiving anthracycline chemotherapy, ultimately leading to heart failure (HF). Unfortunately, DIC remains difficult to manage due to an ignorance regarding pathophysiological mechanisms. Our work aimed to evaluate the role of HSP47 in doxorubicin-induced HF, and to explore the molecular mechanisms. METHODS AND RESULTS: Mice were exposed to multi-intraperitoneal injection of doxorubicin (DOX, 4mg/kg/week, for 6 weeks continuously) to produce DIC. HSP47 expression was significantly upregulated in serum and in heart tissue in DOX-treated mice and in isolated cardiomyocytes. Mice with cardiac-specific HSP47 overexpression and knockdown were generated using recombinant adeno-associated virus (rAVV9) injection. Importantly, cardiac-specific HSP47 overexpression exacerbated cardiac dysfunction in DIC, while HSP47 knockdown prevented DOX-induced cardiac dysfunction, cardiac atrophy and fibrosis in vivo and in vitro. Mechanistically, we identified that HSP47 directly interacted with IRE1α in cardiomyocytes. Furthermore, we provided powerful evidence that HSP47-IRE1α complex promoted TXNIP/NLRP3 inflammasome and reinforced USP1-mediated NLRP3 ubiquitination. Moreover, NLRP3 deficiency in vivo conspicuously abolished HSP47-mediated cardiac atrophy and fibrogenesis under DOX condition. CONCLUSION: HSP47 was highly expressed in serum and cardiac tissue after doxorubicin administration. HSP47 contributed to long-term anthracycline chemotherapy-associated cardiac dysfunction in an NLRP3-dependent manner. HSP47 therefore represents a plausible target for future therapy of doxorubicin-induced HF.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Humanos , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Cardiotoxicidad/metabolismo , Doxorrubicina/farmacología , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Miocitos Cardíacos/metabolismo , Antibióticos Antineoplásicos/efectos adversos , Atrofia/inducido químicamente , Atrofia/metabolismo , Atrofia/patología , Apoptosis , Estrés Oxidativo
6.
Artículo en Inglés | MEDLINE | ID: mdl-37848803

RESUMEN

With increased ageing of the population, cardiovascular disease (CVD) has become the most important factor endangering human health worldwide. Although the treatment of CVD has become increasingly advanced, there are still a considerable number of patients with conditions that have not improved. According to the latest clinical guidelines of the European Cardiovascular Association, obesity has become an independent risk factor for CVD. Adipose tissue includes visceral adipose tissue and subcutaneous adipose tissue. Many previous studies have focused on subcutaneous adipose tissue, but visceral adipose tissue has been rarely studied. However, as a type of visceral adipose tissue, epicardial adipose tissue (EAT) has attracted the attention of researchers because of its unique anatomical and physiological characteristics. This review will systematically describe the physiological characteristics and evaluation methods of EAT and emphasize the important role and treatment measures of EAT in CVD.

7.
Signal Transduct Target Ther ; 8(1): 114, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918543

RESUMEN

Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.


Asunto(s)
Envejecimiento , Senescencia Celular , Cardiopatías , Miocitos Cardíacos , Humanos , Envejecimiento/metabolismo , Envejecimiento/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Biología Molecular , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Senescencia Celular/fisiología , Cardiopatías/metabolismo , Cardiopatías/patología
8.
Eur J Pharmacol ; 940: 175482, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36587888

RESUMEN

BACKGROUND: Increased inflammatory mediators produced by inflamed cells are often connected with pressure-induced cardiac remodelling and heart failure. Interleukin-21 (IL-21) serves as an immunomodulator involved in multiple pathological processes, while the role of IL-21 in pressure-induced cardiac remodelling remains unclear. EXPERIMENT APPROACH: Cardiac function, CD4+T-cell infiltration, and IL-21 and IL-21 receptor expression levels were investigated in a pressure overload mouse model induced by aortic banding (AB) surgery. Western blotting and qPCR were used to detect the effects of IL-21 on inflammation, apoptosis, and fibrosis in the myocardium after AB surgery. In addition, the signal transduction mechanisms underlying these effects were investigated in vivo and in vitro by qPCR and western blotting. KEY RESULTS: IL-21 levels in mice rapidly increased in the acute phase after AB surgery. Compared with those in the control group, the transverse aortas of mice in the AB surgery group contracted. However, it must be noted that neutralizing IL-21 could reduce myocardial injury and remodelling, while the administration of exogenous IL-21 recombinant protein had the opposite effect. Mechanistically, we learned that IL-21 is effective in inducing the activation of tissue inhibitor of metalloproteinase 4 (TIMP4) and matrix metalloproteinase 9 (MMP-9) signalling in vitro and in vivo. We believe that increased activation and secretion of IL-21 and CD4+ T cells may contribute to stress overload-induced cardiac remodelling. CONCLUSION: These findings reveal a novel mechanism by which IL-21 stimulates myocardial inflammation, apoptosis, and fibrosis to induce stress-overload-induced myocardial remodelling by activating the TIMP4/MMP9 signalling pathway.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Remodelación Ventricular , Ratones , Animales , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Noqueados , Miocardio/metabolismo , Transducción de Señal , Inflamación/metabolismo , Fibrosis , Miocitos Cardíacos , Ratones Endogámicos C57BL , Inhibidor Tisular de Metaloproteinasa-4
9.
EBioMedicine ; 86: 104359, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36395739

RESUMEN

BACKGROUND: Arachidonate 5-lipoxygenase (Alox5) belongs to a class of nonheme iron-containing dioxygenases involved in the catalysis of leukotriene biosynthesis. However, the effects of Alox5 itself on pathological cardiac remodeling and heart failure remain elusive. METHODS: The role of Alox5 in pathological cardiac remodeling was investigated by Alox5 genetic depletion, AAV9-mediated overexpression in cardiomyocytes, and a bone marrow (BM) transplantation approach. Neonatal rat cardiomyocytes were used to explore the effects of Alox5 in vitro. Molecular and signaling pathways were revealed by CUT &Tag, IP-MS, RNA sequencing and bioinformatic analyses. FINDINGS: Untargeted metabolomics showed that serum 5-HETE (a primary product of Alox5) levels were little changed in patients with cardiac hypertrophy, while Alox5 expression was significantly upregulated in murine hypertensive cardiac samples and human cardiac samples of hypertrophy, which prompted us to test whether high Alox5 levels under hypertensive stimuli were directly associated with pathologic myocardium in an enzymatic activity-independent manner. Herein, we revealed that Alox5 deficiency significantly ameliorated transverse aortic constriction (TAC)-induced hypertrophy. Cardiomyocyte-specific Alox5 depletion attenuated hypertensive ventricular remodeling. Conversely, cardiac-specifical Alox5 overexpression showed a pro-hypertrophic cardiac phenotype. Ablation of Alox5 in bone marrow-derived cells did not affect pathological cardiac remodeling and heart failure. Mechanically, Runx2 was identified as a target of Alox5. In this regard, Alox5 PEST domain could directly bind to Runx2 PTS domain, promoting nuclear localization of Runx2 in an enzymatic activity-independent manner, simultaneously contributed to liquid-liquid phase separation (LLPS) of Runx2 at specific domain in the nucleus and increased transcription of EGFR in cardiomyocytes. Runx2 depletion alleviated hypertrophy in Ang II-pretreated Alox5-overexpressing cardiomyocytes. INTERPRETATION: Overall, our study demonstrated that targeting Alox5 exerted a protective effect against cardiac remodeling and heart failure under hypertensive stimuli by disturbing LLPS of Runx2 and substantial reduction of EGFR transcription activation in cardiomyocytes. Our findings suggest that negative modulation of Alox5-Runx2 may provide a therapeutic approach against pathological cardiac remodeling and heart failure. FUNDING: National Natural Science Foundation of China.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Insuficiencia Cardíaca , Hipertensión , Remodelación Ventricular , Animales , Humanos , Ratones , Ratas , Araquidonato 5-Lipooxigenasa/genética , Cardiomegalia/genética , Cardiomegalia/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Insuficiencia Cardíaca/metabolismo , Hipertensión/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/genética
10.
Acta Pharm Sin B ; 12(11): 4138-4153, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36386478

RESUMEN

Despite complications were significantly reduced due to the popularity of percutaneous coronary intervention (PCI) in clinical trials, reperfusion injury and chronic cardiac remodeling significantly contribute to poor prognosis and rehabilitation in AMI patients. We revealed the effects of HSP47 on myocardial ischemia-reperfusion injury (IRI) and shed light on the underlying molecular mechanism. We generated adult mice with lentivirus-mediated or miRNA (mi1/133TS)-aided cardiac fibroblast-selective HSP47 overexpression. Myocardial IRI was induced by 45-min occlusion of the left anterior descending (LAD) artery followed by 24 h reperfusion in mice, while ischemia-mediated cardiac remodeling was induced by four weeks of reperfusion. Also, the role of HSP47 in fibrogenesis was evaluated in cardiac fibroblasts following hypoxia-reoxygenation (HR). Extensive HSP47 was observed in murine infarcted hearts, human ischemic hearts, and cardiac fibroblasts and accelerated oxidative stress and apoptosis after myocardial IRI. Cardiac fibroblast-selective HSP47 overexpression exacerbated cardiac dysfunction caused by chronic myocardial IRI and presented deteriorative fibrosis and cell proliferation. HSP47 upregulation in cardiac fibroblasts promoted TGFß1-Smad4 pathway activation and Smad4 deubiquitination by recruiting ubiquitin-specific peptidase 10 (USP10) in fibroblasts. However, cardiac fibroblast specific USP10 deficiency abolished HSP47-mediated fibrogenesis in hearts. Moreover, blockage of HSP47 with Col003 disturbed fibrogenesis in fibroblasts following HR. Altogether, cardiac fibroblast HSP47 aggravates fibrosis post-myocardial IRI by enhancing USP10-dependent Smad4 deubiquitination, which provided a potential strategy for myocardial IRI and cardiac remodeling.

11.
J Am Heart Assoc ; 11(19): e026728, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36172969

RESUMEN

Background Mechanistic insights of glucagon-like peptide-1 receptor agonists remain incompletely identified, despite the efficacy in heart failure observed in clinical trials. Here, we evaluated the effects of dulaglutide on heart complications and illuminated its underlying mechanism. Methods and Results We used mice with high-fat diet (HFD)/streptozotocin-induced type 2 diabetes to investigate the effects of dulaglutide upon diabetic cardiac dysfunction. After the onset of diabetes, control and diabetic mice were injected subcutaneously with either dulaglutide (type 2 diabetes-dulaglutide and control-dulaglutide groups) or vehicle (type 2 diabetes-vehicle and control-vehicle groups) for 8 weeks. Subsequently, heart characteristics, cardiometabolic profile and mitochondrial morphology and function were evaluated. Also, we analyzed the effects of dulaglutide on neonatal rat ventricular myocytes treated with high glucose plus palmitic acid. In addition, wild type and AMP-activated protein kinase α2 mutant mice were used to evaluate the underlying mechanism. In type 2 diabetes mouse model, dulaglutide ameliorated insulin resistance, improved glucose tolerance, reduced hyperlipidemia, and promoted fatty acid use in the myocardium. Dulaglutide treatment functionally attenuated cardiac remodeling and dysfunction and promoted metabolic reprogramming in diabetic mice. Furthermore, dulaglutide improved mitochondria fragmentation in myocytes, and simultaneously reinstated mitochondrial morphology and function in diabetic hearts. We also found that dulaglutide preserved AMP-activated protein kinase α2-dependent mitochondrial homeostasis, and the protective effects of dulaglutide on diabetic heart was almost abated by AMP-activated protein kinase α2 knockout. Conclusions Dulaglutide prevents diabetic heart failure and favorably affects myocardial metabolic remodeling by impeding mitochondria fragmentation, and we suggest a potential strategy to develop a long-term activation of glucagon-like peptide-1 receptor-based therapy to treat diabetes associated cardiovascular complications.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos Similares al Glucagón/análogos & derivados , Glucosa , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/prevención & control , Hipoglucemiantes/uso terapéutico , Fragmentos Fc de Inmunoglobulinas , Ratones , Ácido Palmítico , Ratas , Proteínas Recombinantes de Fusión/farmacología , Estreptozocina/uso terapéutico
12.
Front Pharmacol ; 12: 794982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899356

RESUMEN

Background: As a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, lithospermic acid (LA) has been identified as the pharmacological management for neuroprotection and hepatoprotection. However, the role and mechanism of lithospermic acid in the pathological process of myocardial ischemia-reperfusion injury are not fully revealed. Methods: C57BL/6 mice were subjected to myocardial ischemia and reperfusion (MI/R) surgery and pretreated by LA (50 mg/kg, oral gavage) for six consecutive days before operation. The in vitro model of hypoxia reoxygenation (HR) was induced by hypoxia for 24 h and reoxygenation for 6 h in H9C2 cells, which were subsequently administrated with lithospermic acid (100 µM). Nrf2 siRNA and dorsomorphin (DM), an inhibitor of AMPKα, were used to explore the function of AMPKα/Nrf2 in LA-mediated effects. Results: LA pretreatment attenuates infarct area and decreases levels of TnT and CK-MB in plasm following MI/R surgery in mice. Echocardiography and hemodynamics indicate that LA suppresses MI/R-induced cardiac dysfunction. Moreover, LA ameliorates oxidative stress and cardiomyocytes apoptosis following MI/R operation or HR in vivo and in vitro. In terms of mechanism, LA selectively activates eNOS, simultaneously increases nuclear translocation and phosphorylation of Nrf2 and promotes Nrf2/HO-1 pathway in vivo and in vitro, while cardioprotection of LA is abolished by pharmacological inhibitor of AMPK or Nrf2 siRNA in H9C2 cells. Conclusion: LA protects against MI/R-induced cardiac injury by promoting eNOS and Nrf2/HO-1 signaling via phosphorylation of AMPKα.

13.
Free Radic Biol Med ; 166: 348-357, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33705958

RESUMEN

Sepsis rapidly contributed to multiorgan failure affecting most commonly of the cardiovascular and respiratory systems and yet there were no effective therapies. The current study aimed at providing evidence on the cardioprotection of suppression of 5-Lipoxygenase (5-Lox) and identifying the possible mechanism in the mouse model of sepsis. The cecal ligation-perforation (CLP) model was applied to C57BL/6 wild-type (WT) and 5-Lox deficient (5-Lox-/-) mice to induce sepsis. 5-Lox expression was up-regulated in mouse myocardium and leukotriene B4 (LTB4) level was increased in serum after sepsis. Subsequently, we utilized a recombinant adenoviral expression vector (rAAV9) to overexpress Alox5 gene in adult mice. Compared to WT mice, 5-Lox overexpression accelerated CLP-induced myocardial injury and cardiac dysfunction. Oppositely, 5-Lox deficiency offered protection against myocardial injury in a mouse model of sepsis and attenuated sepsis-mediated inflammation, oxidative stress and apoptosis in the mouse heart. Mechanically, 5-Lox promoted LTB4 production, which in turn contributed to the activation of leukotriene B4 receptor 1 (BLT1)/interleukin-12p35 (IL-12p35) pathway and enhanced M1 macrophage polarization. However, the suppression of BLT1 by either gene mutation or antagonist U75302 significantly inhibited the adverse effect of 5-Lox in sepsis. Further study demonstrated that pharmacological inhibition of 5-Lox prevented CLP-induced septic cardiomyopathy (SCM). Our study identified 5-Lox exacerbated sepsis-associated myocardial injury through activation of LTB4 production and promoting BLT1/IL-12p35 pathway. Hence, inhibition of 5-Lox may be a potential candidate strategy for septic cardiac dysfunction treatment.


Asunto(s)
Receptores de Leucotrieno B4 , Sepsis , Animales , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Regulación hacia Abajo , Subunidad p35 de la Interleucina-12 , Ratones , Ratones Endogámicos C57BL , Receptores de Leucotrieno B4/genética , Receptores de Leucotrieno B4/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
14.
Front Cell Dev Biol ; 8: 713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850832

RESUMEN

Nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) is involved in fibrosis of multiple organs, such as kidney, liver, lung, and the like. However, the role of NLRP3 in cardiac fibrosis is still controversial and remains unclear. The study aims to investigate the role of NLRP3 on cardiac fibrosis induced by isoproterenol (ISO). In vivo, NLRP3 knockout and wild-type mice were subcutaneously injected with ISO to induce the cardiac fibrosis model. The results showed that NLRP3 deficiency alleviated the cardiac fibrosis and inflammation induced by ISO. In vitro, neonatal rat ventricular myocytes (NRVMs) and primary adult mouse cardiac fibroblasts of NLRP3 knockout and wild-type mice were isolated and challenged with ISO. Adenovirus (Ad-) NLRP3 and small interfering RNAs targeting NLRP3 were used to transfect NRVMs to overexpress or knockdown NLRP3. We found that NLRP3 could regulate high-mobility group box 1 protein (HMGB1) secretion via reactive oxygen species production in NRVMs and the HMGB1 secreted by NRVMs promoted the activation and proliferation of cardiac fibroblasts. Thus, we concluded that the NLRP3/reactive oxygen species/HMGB1 pathway could be the underlying mechanism of ISO-induced cardiac fibrosis.

15.
Int J Biol Sci ; 16(1): 12-26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31892842

RESUMEN

Adverse cardiac remodeling after myocardial infarction (MI) is associated with extremely high mortality rates worldwide. Although optimized medical therapy, Preservation of lusitropic and inotropic function and protection against adverse remodeling in ventricular structure remain relatively frequent. This study demonstrated that Andrographolide (Andr) significantly ameliorated adverse cardiac remodeling induced by myocardial infarction and improves contractile function in mice with LAD ligation compared with the control group. Briefly, Andr markedly attenuated cardiac fibrosis and relieved inflammation after myocardial infarction. Specifically, Andr significantly blocked oxidative stress and the nuclear translocation of p-P65 following myocardial infarction. At the mechanistic level, antioxidant effect of Andr was achieved through strengthening antioxidative stress capacity and attributed to the activation of Nrf2/HO-1 Signaling. Consistently, H9C2 administrated with Andr showed a decreased oxidative stress caused by hypoxia precondition, but treatment with specific Nrf2 inhibitor (ML385) or the silence of Nrf2 blunted the activation of Nrf2/HO-1 Signaling and removed the protective effects of Andr in vitro. Thus, we suggest that Andr alleviates adverse cardiac remodeling following myocardial infarction through enhancing Nrf2 signaling pathway.


Asunto(s)
Diterpenos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Western Blotting , Ecocardiografía , Hemodinámica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
16.
Oxid Med Cell Longev ; 2019: 7536803, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781348

RESUMEN

Zileuton has been demonstrated to be an anti-inflammatory agent due to its well-known ability to inhibit 5-lipoxygenase (5-LOX). However, the effects of zileuton on cardiac remodeling are unclear. In this study, the effects of zileuton on pressure overload-induced cardiac remodeling were investigated and the possible mechanisms were examined. Aortic banding was performed on mice to induce a cardiac remodeling model, and the mice were then treated with zileuton 1 week after surgery. We also stimulated neonatal rat cardiomyocytes with phenylephrine (PE) and then treated them with zileuton. Our data indicated that zileuton protected mice from pressure overload-induced cardiac hypertrophy, fibrosis, and oxidative stress. Zileuton also attenuated PE-induced cardiomyocyte hypertrophy in a time- and dose-dependent manner. Mechanistically, we found that zileuton activated PPARα, but not PPARγ or PPARθ, thus inducing Keap and NRF2 activation. This was confirmed with the PPARα inhibitor GW7647 and NRF2 siRNA, which abolished the protective effects of zileuton on cardiomyocytes. Moreover, PPARα knockdown abolished the anticardiac remodeling effects of zileuton in vivo. Taken together, our data indicate that zileuton protects against pressure overload-induced cardiac remodeling by activating PPARα/NRF2 signaling.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Hidroxiurea/análogos & derivados , Inhibidores de la Lipooxigenasa/farmacología , PPAR alfa/metabolismo , Transducción de Señal/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hidroxiurea/farmacología , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Ratas
17.
J Cell Mol Med ; 23(9): 6466-6478, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31293067

RESUMEN

Cardiac remodelling refers to a series of changes in the size, shape, wall thickness and tissue structure of the ventricle because of myocardial injury or increased pressure load. Studies have shown that cardiac remodelling plays a significant role in the development of heart failure. Zingerone, a monomer component extracted from ginger, has been proven to possess various properties including antioxidant, anti-inflammatory, anticancer and antidiabetic properties. As oxidative stress and inflammation contribute to acute and chronic myocardial injury, we explored the role of zingerone in cardiac remodelling. Mice were subjected to aortic banding (AB) or sham surgery and then received intragastric administration of zingerone or saline for 25 days. In vitro, neonatal rat cardiomyocytes (NRCMs) were treated with zingerone (50 and 250 µmol/L) when challenged with phenylephrine (PE). We observed that zingerone effectively suppressed cardiac hypertrophy, fibrosis, oxidative stress and inflammation. Mechanistically, Zingerone enhanced the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) activation via increasing the phosphorylation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Additionally, we used Nrf2-knockout (KO) and eNOS-KO mice and found that Nrf2 or eNOS deficiency counteracts these cardioprotective effects of zingerone in vivo. Together, we concluded that zingerone may be a potent treatment for cardiac remodelling that suppresses oxidative stress via the eNOS/Nrf2 pathway.


Asunto(s)
Aorta/efectos de los fármacos , Guayacol/análogos & derivados , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Aorta/metabolismo , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Células Cultivadas , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Guayacol/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenilefrina/farmacología , Ratas
18.
J Mol Cell Cardiol ; 128: 160-178, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30711544

RESUMEN

High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has previously been reported to play an essential role in regulating the expression of many genes through architectural remodeling processes. However, the effects of HMGA2 on cardiovascular disease, especial cardiac remodeling, is unclear. This study was aimed at investigating the functional role of HMGA2 in pressure overload-induced cardiac remodeling. Mice that were subjected to aortic banding (AB) for 8 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with altered expression of HMGA2. Cardiac-specific expression of the human HMGA2 gene in mice with an adeno-related virus 9 delivery system ameliorated cardiac remodeling and improve cardiac function in response to pressure overload by activating PPARγ/NRF2 signaling. Knockdown of HMGA2 by AAV9-shHMGA2 accelerated cardiac remodeling after 1 weeks of AB surgery. Additionally, knockdown of heart PPARγ largely abolished HMGA2 overexpression-mediated cardioprotection. HMGA2-mediated cardiomyocyte protection was largely abrogated by knocking down NRF2 and inhibiting PPARγ in cardiomyocytes. PPARγ activation was mediated by C/EBPß, which directly interacted with HMGA2. Knocking down C/EBPß offset the effects of HMGA2 on PPARγ activation and cardioprotection. These findings show that the overexpression of HMGA2 ameliorates the remodeling response to pressure overload, and they also imply that the upregulation of HMGA2 may become a treatment strategy in cardiac pathologies.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/genética , Enfermedades Cardiovasculares/genética , Proteína HMGA2/genética , PPAR gamma/genética , Aorta/metabolismo , Aorta/patología , Remodelación Atrial/genética , Cardiomegalia/genética , Cardiomegalia/patología , Enfermedades Cardiovasculares/patología , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/genética , Presión/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...