Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Se Pu ; 42(9): 819-826, 2024 Sep.
Artículo en Chino | MEDLINE | ID: mdl-39198941

RESUMEN

Red tides are a type of natural marine disaster caused by harmful algae characterized by a high toxicity, wide distribution, and long duration. Since the concentration of algal toxins in seawater increases with the occurrence of red tides, algal toxins detected in seawater could be used to predict the occurrence and evolution of red tides. Brevetoxin-A (BTX-A) is a secondary metabolite produced by the harmful algae Karenia brevis, whose detection in seawater could form the basis of an accurate warning system for incoming red tides. However, due to the inherent complexity of the seawater matrix and the extremely low levels of BTX-A in seawater, the use of instruments for its direct detection is difficult. Therefore, there is an urgent need to develop a sample pretreatment method for the efficient enrichment of BTX-A in seawater. In this study, a metal-organic backbone material (UiO-66) and its composite with silica microspheres (SiO2@UiO-66) were successfully synthesized using the solvothermal method. The prepared SiO2@UiO-66 exhibited good hydrophilicity, water stability, and large specific surface area. Furthermore, it also exhibited hydrogen bonding and electrostatic interactions with BTX-A, had a strong affinity for BTX-A, and was able to efficiently adsorb BTX-A in complex matrices. Therefore, SiO2@UiO-66 showed potential as a novel packing material for the extraction of BTX-A from solid phase extraction columns. Combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), a highly sensitive detection method for the determination of BTX-A in marine water was established. The established analytical method had a low detection limit (3.0 pg/mL), a wide linear range (10.0 -200.0 pg/mL), and a good linear relationship (R=0.9992). Combined with the Fujian Province Red Tide Monitoring and Early Warning Information 2021 issued by the Fujian Provincial Oceanic and Fisheries Bureau, the analytical method established herein was successfully applied to analyze and monitor the content of BTX-A in actual seawater samples. This highlights the proposed system's potential for use as an early warning factor in the monitoring of red tides, representing a simple and fast pretreatment methodology for the detection of BTX-A in seawater.


Asunto(s)
Toxinas Marinas , Estructuras Metalorgánicas , Oxocinas , Agua de Mar , Extracción en Fase Sólida , Circonio , Agua de Mar/química , Oxocinas/análisis , Oxocinas/química , Estructuras Metalorgánicas/química , Circonio/química , Contaminantes Químicos del Agua/análisis , Exotoxinas/análisis , Exotoxinas/química , Toxinas Poliéteres
2.
Anal Methods ; 15(47): 6590-6602, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38018453

RESUMEN

Algal toxins are important metabolites of toxic harmful algal blooms (HABs), and their qualitative and qualitative detection can serve as early warning indicators for toxic HABs, complementing traditional HAB monitoring and improving the accuracy of early warning. Therefore, this work took the detection of domoic acid (DA) as an example and prepared zeolitic imidazolate framework-8 (ZIF-8) with high enrichment performance and high water stability and its core-shell composite material SiO2@ZIF-8 as an adsorbent filler. Density functional theory (DFT) calculations and interference experiments verified that Zn2+ on SiO2@ZIF-8 played a crucial role in enriching DA on SiO2@ZIF-8. By using it as a solid-phase extraction (SPE) filler, it showed excellent performance compared with other SPE columns (C18/HLB/SAX/ZIF-8). Therefore, the SiO2@ZIF-8 column was coupled to high-performance liquid chromatography-mass spectrometry (SPE-HPLC-MS/MS) to establish a highly sensitive detection method for algal toxins in seawater, which had a wide linear range (12.0-5000.0 ng L-1), good reproducibility (RSD) and low limit of detection (4.0 ng L-1), and realized the monitoring of trace DA in the Pingtan sea area of Fujian Province from 2021 to 2022. By comparing other HAB early warning indicators such as salinity and pH and combining them with the information released by the Fujian Provincial Ocean and Fisheries Bureau, the content of DA in seawater measured by the established SPE-HPLC-MS/MS method can provide reference information for HAB monitoring and early warning.


Asunto(s)
Dióxido de Silicio , Zeolitas , Espectrometría de Masas en Tándem/métodos , Adsorción , Zeolitas/química , Reproducibilidad de los Resultados , Teoría Funcional de la Densidad , Agua de Mar/química , Toxinas Marinas/análisis , Extracción en Fase Sólida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA