Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36454665

RESUMEN

Valsa is a genus of ascomycetes within the Valsaceae family. This family includes many wood destructive pathogens such as the well known Valsa mali and Valsa pyri which cause canker diseases in fruit trees and threaten the global fruit production. Lack of genomic information of this family is impeding our understandings about their evolution and genetic basis of their pathogenicity divergence. Here, we report genome assemblies of Valsa malicola, Valsa persoonii, and Valsa sordida which represent close relatives of Valsa mali and Valsa pyri with different host preferences. Comparative genomics analysis revealed that segmental rearrangements, inversions, and translocations frequently occurred among Valsa spp. genomes. Gene families that exhibited gene copy expansions tended to be associated with secondary metabolism, transmembrane transport, and pyrophosphatase activities. Orthologous genes in regions lost synteny exhibited significantly higher rate of synonymous substitution (KS) than those in regions retained synteny. Moreover, among these genes, membrane transporter families associated with antidrug (MFS, DHA) activities and nutrient transportation (SP and APCs) activities were significantly over-represented. Lineage specific synonymous substitution (KS) and nonsynonymous substitution (KA) analysis based on the phylogeny constructed from 11 fungal species identified a set of genes with selection signatures in Valsa clade and these genes were significantly enriched in functions associated with fatty acid beta-oxidation, DNA helicase activity, and ATPase activity. Furthermore, unique genes that possessed or retained by each of the five Valsa species are more likely part of the secondary metabolic (SM) gene clusters. SM gene clusters conserved across five Valsa species showed various degrees of diversification in both identity and completeness. All 11 syntenically conserved SM clusters showed differential expression during the infection of apple branch with Valsa mali suggesting involvements of secondary metabolism in the pathogenicity of Valsa species.


Asunto(s)
Ascomicetos , Malus , Virulencia/genética , Ascomicetos/genética , Malus/genética , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
Imeta ; 1(2): e12, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868573

RESUMEN

The platform consists of three modules, which are pre-configured bioinformatic pipelines, cloud toolsets, and online omics' courses. The pre-configured bioinformatic pipelines not only combine analytic tools for metagenomics, genomes, transcriptome, proteomics and metabolomics, but also provide users with powerful and convenient interactive analysis reports, which allow them to analyze and mine data independently. As a useful supplement to the bioinformatics pipelines, a wide range of cloud toolsets can further meet the needs of users for daily biological data processing, statistics, and visualization. The rich online courses of multi-omics also provide a state-of-art platform to researchers in interactive communication and knowledge sharing.

3.
Mol Plant Pathol ; 20(6): 843-856, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30912612

RESUMEN

Valsa mali is the causal agent of apple Valsa canker, a destructive disease in East Asia. Effector proteins play important roles in the virulence of phytopathogenic fungi, and we identified five Hce2 domain-containing effectors (VmHEP1, VmHEP2, VmHEP3, VmHEP4 and VmHEP5) from the V. mali genome. Amongst these, VmHEP1 and VmHEP2 were found to be up-regulated during the early infection stage and VmHEP1 was also identified as a cell death inducer through its transient expression in Nicotiana benthamiana. Although the deletion of each single VmHEP gene did not lead to a reduction in virulence, the double-deletion of VmHEP1 and VmHEP2 notably attenuated V. mali virulence in both apple twigs and leaves. An evolutionary analysis revealed that VmHEP1 and VmHEP2 are two paralogues, under purifying selection. VmHEP1 and VmHEP2 are located next to each other on chromosome 11 as tandem genes with only a 604 bp physical distance. Interestingly, the deletion of VmHEP1 promoted the expression of VmHEP2 and, vice versa, the deletion of VmHEP2 promoted the expression of VmHEP1. The present results provide insights into the functions of Hce2 domain-containing effectors acting as virulence factors of V. mali, and provide a new perspective regarding the contribution of tandem genes to the virulence of phytopathogenic fungi.


Asunto(s)
Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , Proteínas Fúngicas/genética , Nicotiana/microbiología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...