Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(15): e2300780, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36965081

RESUMEN

Gallium nitride (GaN) single crystal, as the representative of wide-band semiconductors, has great prospects for high-temperature energy storage, of its splendid power output, robust temperature stability, and superior carrier mobility. Nonetheless, it is an essential challenge for GaN-based devices to improve energy storage. Herein, an innovative strategy is proposed by constructing GaN/Nickel cobalt oxygen (NiCoO2  ï¼‰heterostructure for enhanced supercapacitors (SCs). Benefiting from the synergy effect between the porous GaN network as a highly conductive skeleton and the NiCoO2 with massive active sites. The GaN/NiCoO2 heterostructure-based SCs with ion liquids electrolyte are assembled and delivered an impressive energy density of 15.2 µWh cm-2 and power density, as well as superior service life at 130 °C. The theoretical calculation further explains that the reason for the energy storage enhancement of the GaN/NiCoO2 is due to the presence of the built-in electric fields. This work offers a novel perspective for meeting the practical application of GaN-based energy storage devices with exceptional performance capable of operation under high-temperature environments.

2.
Adv Sci (Weinh) ; 9(9): e2105193, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35040580

RESUMEN

Potassium ion hybrid capacitors (PIHCs) have attracted considerable interest due to their low cost, competitive power/energy densities, and ultra-long lifespan. However, the more sluggish insertion kinetics of battery-type anodes than capacitor-type cathodes in PIHCs seriously limits their practical application. Therefore, developing advanced anodes with high capacitor and suitable K+ intercalation is imperative and significant. A novel core-shell structure of NiCo oxide/NiCo oxyphosphide (NCOP) nanowires are designed and constructed in this study via efficient and facile strategy. Combining the merits of the core-shell structure and the massive active sites in the oxyphosphide layer, the as-prepared NCOP composites manifest highly reversible capacitors and outstanding rate capability. Meanwhile, the insertion and conversion potassium storage mechanisms of the NCOP are successfully revealed through in situ X-ray diffraction and density functional theory calculations, respectively. Furthermore, the PIHC was assembled with NCOP anode and borocarbonitride cathode, which displays a large energy density and high-power density, along with an exceptional capacity retention of ≈90% over 10 000 cycles at 1.0 A g-1 . This work provides the anion regulation strategy for modifying the transition metal oxide and constructing the advancing electrode materials for next-generation energy storage and beyond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA