Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85
2.
J Clin Gastroenterol ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38457410

BACKGROUND: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. METHODS: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. RESULTS: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. CONCLUSIONS: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.

3.
Front Psychiatry ; 15: 1328240, 2024.
Article En | MEDLINE | ID: mdl-38362032

Aims: Autism is a multifaceted developmental disorder of the nervous system, that necessitates novel therapeutic approaches beyond traditional medications and psychosomatic therapy, such as appropriate sensory integration training. This systematic mapping review aims to synthesize existing knowledge on enriching environmental interventions as an alternative avenue for improving autism, guiding future research and practice. Method: A comprehensive search using the terms ASD and Enriched Environment was conducted across PubMed, EMBASE, ISI, Cochrane, and OVID databases. Most of the literature included in this review was derived from animal model experiments, with a particular focus on assessing the effect of EE on autism-like behavior, along with related pathways and molecular mechanisms. Following extensive group discussion and screening, a total of 19 studies were included for analysis. Results: Enriched environmental interventions exhibited the potential to induce both behavioral and biochemical changes, ameliorating autism-like behaviors in animal models. These improvements were attributed to the targeting of BDNF-related pathways, enhanced neurogenesis, and the regulation of glial inflammation. Conclusion: This paper underscores the positive impact of enriched environmental interventions on autism through a review of existing literature. The findings contribute to a deeper understanding of the underlying brain mechanisms associated with this intervention.

4.
Biomed Pharmacother ; 170: 115999, 2024 Jan.
Article En | MEDLINE | ID: mdl-38091637

The coronavirus disease 2019 (COVID-19) pandemic has affected the mental health of individuals worldwide, and the risk of psychiatric sequelae and consequent mental disorders has increased among the general population, health care workers and patients with COVID-19. Achieving effective and widespread prevention of pandemic-related psychiatric sequelae to protect the mental health of the global population is a serious challenge. Salidroside, as a natural agent, has substantial pharmacological activity and health effects, exerts obvious neuroprotective effects, and may be effective in preventing and treating psychiatric sequelae and mental disorders resulting from stress stemming from the COVID-19 pandemic. Herein, we systematically summarise, analyse and discuss the therapeutic effects of salidroside in the prevention and treatment of psychiatric sequelae as well as its roles in preventing the progression of mental disorders, and fully clarify the potential of salidroside as a widely applicable agent for preventing mental disorders caused by stress; the mechanisms underlying the potential protective effects of salidroside are involved in the regulation of the oxidative stress, neuroinflammation, neural regeneration and cell apoptosis in the brain, the network homeostasis of neurotransmission, HPA axis and cholinergic system, and the improvement of synaptic plasticity. Notably, this review innovatively proposes that salidroside is a potential agent for treating stress-induced health issues during the COVID-19 pandemic and provides scientific evidence and a theoretical basis for the use of natural products to combat the current mental health crisis.


COVID-19 , Humans , Pandemics , Neuroprotection , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System
5.
Small ; 20(12): e2307072, 2024 Mar.
Article En | MEDLINE | ID: mdl-37940616

Discovering new deep ultraviolet (DUV) nonlinear optical (NLO) materials is the current research hotspot. However, how to perfectly integrate several stringent performances into a crystal is a great challenge because of the natural incompatibility among them, particularly wide band gap and large NLO coefficient. To tackle the challenge, a boron-rich closed-loop strategy is supposed, based on which a new barium borate, Ba4B14O25, is designed and synthesized successfully via the high-temperature solid-state melting method. It features a highly polymeric 3D geometry with the closed-loop anionic framework [B14O25]8- constructed by the fundamental building blocks [B14O33]24-. The high-density π-conjugated [BO3]3- groups and the fully closed-loop B-O-B connections make Ba4B14O25 possess excellent NLO properties, including short UV cutoff edge (<200 nm), large second harmonic generation response (3.0 × KDP) and phase-matching capability, being a promising DUV-transparent NLO candidate material. The work provides a creative design strategy for the exploration of DUV NLO crystals.

6.
Anal Biochem ; 687: 115431, 2024 04.
Article En | MEDLINE | ID: mdl-38123111

[S U M M A R Y] Many miRNA-disease association prediction models incorporate Gaussian interaction profile kernel similarity (GIPS). However, the GIPS fails to consider the specificity of the miRNA-disease association matrix, where matrix elements with a value of 0 represent miRNA and disease relationships that have not been discovered yet. To address this issue and better account for the impact of known and unknown miRNA-disease associations on similarity, we propose a method called vector projection similarity-based method for miRNA-disease association prediction (VPSMDA). In VPSMDA, we introduce three projection rules and combined with logistic functions for the miRNA-disease association matrix and propose a vector projection similarity measure for miRNAs and diseases. By integrating the vector projection similarity matrix with the original one, we obtain the improved miRNA and disease similarity matrix. Additionally, we construct a weight matrix using different numbers of neighbors to reduce the noise in the similarity matrix. In performance evaluation, both LOOCV and 5-fold CV experiments demonstrate that VPSMDA outperforms seven other state-of-the-art methods in AUC. Furthermore, in a case study, VPSMDA successfully predicted 10, 9, and 10 out of the top 10 associations for three important human diseases, respectively, and these predictions were confirmed by recent biomedical resources.


MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Genetic Predisposition to Disease , Algorithms , Models, Genetic , Area Under Curve , Computational Biology/methods
7.
Hemoglobin ; 47(5): 202-204, 2023 Sep.
Article En | MEDLINE | ID: mdl-37909121

In this report we decribed a new α-chain variant found during the measurement of hemoglobin A1c (Hb A1c) using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS). MALDI-TOF MS analysis detected an α-chain variant with a mass of 15,155 Da. However, this Hb variant was not detected during Hb A1c measurement by cation-exchange high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) methods. Sanger sequencing validated the presence of a heterozygous missense mutation [HBA1: c.239C > T, CD79(GCG > GTG)(Ala > Val)]. The observed 28 Da mass difference exactly matches the theoretical mass difference (28 Da) resulting from the substitution of alanine (89.079) with valine (117.133). As this represents the initial documentation of the mutation, we named it Hb Tangshan after the proband's residence.


Hemoglobins, Abnormal , Humans , Glycated Hemoglobin/genetics , Hemoglobins, Abnormal/genetics , Hemoglobins, Abnormal/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Chromatography, High Pressure Liquid , Electrophoresis, Capillary , Valine/genetics
8.
J Affect Disord ; 340: 100-112, 2023 11 01.
Article En | MEDLINE | ID: mdl-37543111

BACKGROUND: Sleep deprivation (SD) has been suggested to have a rapid antidepressant effect. There is substantial evidence that neuroinflammation and neuroplasticity play critical roles in the pathophysiology and treatment of depression. Here, we investigated the mechanisms of SD to alleviate depression-like behaviors of mice, and the role of neuroinflammation and neuroplasticity in it. METHODS: Adult male C57BL/6 J mice were subjected to chronic restraint stress (CRS) for 6 weeks, and 6 h of SD were administrated. Behavioral tests were performed to measure depression-like behaviors. RNA-sequencing and bioinformatic analysis were performed in the anterior cingulate cortex (ACC). The differentially expressed genes were confirmed by quantitative real-time polymerase chain reaction (RT-qPCR). Neuroinflammation and neuroplasticity were measured by western blotting and immunofluorescence staining. RESULTS: Behavioral tests demonstrated that SD swiftly attenuated the depression-like behaviors induced by CRS. RNA-sequencing identified the upregulated immune and inflammatory pathways after CRS exposure were downregulated by SD. Furthermore, SD reversed the levels of immune and inflammation-related mRNA, pro-inflammatory factors and microglia activation in ACC. Additionally, the impaired neuroplasticity elicited by CRS in the prefrontal cortex (PFC) and ACC were improved by SD. LIMITATIONS: More in-depth studies are required to determine the role of different SD protocols in depressive symptoms and their underlying mechanisms. CONCLUSIONS: Our study revealed the rapid antidepressant effect of SD on CRS mice through the reduction of the neuroinflammatory response in ACC and the improvement of neuroplasticity in PFC and ACC, providing a theoretical basis for the clinical application of SD as a rapid antidepressant treatment.


Depression , Neuroinflammatory Diseases , Mice , Male , Animals , Depression/drug therapy , Depression/metabolism , Sleep Deprivation/drug therapy , Mice, Inbred C57BL , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Inflammation/metabolism , Neuronal Plasticity , Stress, Psychological/metabolism
9.
Anal Biochem ; 679: 115297, 2023 10 15.
Article En | MEDLINE | ID: mdl-37619903

Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are associated with various complex human diseases. They can serve as disease biomarkers and hold considerable promise for the prevention and treatment of various diseases. The traditional random walk algorithms generally exclude the effect of non-neighboring nodes on random walking. In order to overcome the issue, the neighborhood constraint (NC) approach is proposed in this study for regulating the direction of the random walk by computing the effects of both neighboring nodes and non-neighboring nodes. Then the association matrix is updated by matrix multiplication for minimizing the effect of the false negative data. The heterogeneous lncRNA-disease network is finally analyzed using an unbalanced random walk method for predicting the potential lncRNA-disease associations. The LUNCRW model is therefore developed for predicting potential lncRNA-disease associations. The area under the curve (AUC) values of the LUNCRW model in leave-one-out cross-validation and five-fold cross-validation were 0.951 and 0.9486 ± 0.0011, respectively. Data from published case studies on three diseases, including squamous cell carcinoma, hepatocellular carcinoma, and renal cell carcinoma, confirmed the predictive potential of the LUNCRW model. Altogether, the findings indicated that the performance of the LUNCRW method is superior to that of existing methods in predicting potential lncRNA-disease associations.


Kidney Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Algorithms , Area Under Curve , Walking
10.
Dokl Biochem Biophys ; 510(1): 132-143, 2023 Jun.
Article En | MEDLINE | ID: mdl-37582875

LOX (Lysyl oxidase) family participates in the catalysis of collagen and elastin to maintain ECM homeostasis. Glioma is the most common primary brain tumor and LOX family has not been systemic studied in glioma. In this study, we found LOX family members are upregulated expressed in gliomas samples. A protein-protein interaction network (PPIN) was construct to visualize and understand the differential expression pattern, as well as functional annotation, for LOX family and their interacting proteins, which involved in collagen fibril organization and MAPK signaling pathway. Through subcellular localization distribution, the LOX family members distribute both intracellular and extracellular. All five LOX members are consistently significantly correlate with dendritic cell both in immune infiltrate of GBM and LGG. Survival analysis showed that high expression of LOX family is associated with a poor prognosis of gliomas patients. These analyses provide important clues to identify the potential biological roles for LOX family in gliomas, which might serve as diagnosis markers.


Glioma , Protein-Lysine 6-Oxidase , Humans , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/analysis , Protein-Lysine 6-Oxidase/metabolism , Clinical Relevance , Collagen/metabolism , Glioma/genetics
11.
Neurol Sci ; 44(12): 4391-4399, 2023 Dec.
Article En | MEDLINE | ID: mdl-37458844

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterised by recurrent subcortical ischemic events, migraine with aura, dementia and mood disturbance. Strokes are typically lacunar infarcts; however, bilateral multiple subcortical lacunar infarcts have been described only sporadically. METHOD: We described four CADASIL patients who presented with acute bilateral multiple subcortical infarcts as the first manifestation. We also briefly summarised the case reports detailing the bilateral multiple infarcts in CADASIL. RESULTS: Patient 1 and patient 2 were family members, and they presented with cognitive impairment. Patient 3 and patient 4 presented with slurred speech and hemiparesis. Patients 1, 3 and 4 developed hemodynamic fluctuations before the occurrence of ischemic stroke. Laboratory tests revealed elevated fibrinogen levels in patients 3 and 4. The brain magnetic resonance imaging showed acute bilateral multiple subcortical infarcts on the periventricular white matter in all the patients. CONCLUSION: CADASIL, with a poor brain hemodynamic reserve, is vulnerable to hemodynamic alterations (e.g. blood pressure fluctuation, dehydration, blood loss and anaemia) and intolerable to ischemia and hypoxia of the brain. Furthermore, blood hypercoagulation may contribute to acute multiple bilateral infarctions in CADASIL. Therefore, it is necessary to avert these predispositions in CADASIL patients in their daily life.


CADASIL , Leukoencephalopathies , Migraine Disorders , Stroke, Lacunar , Humans , CADASIL/complications , CADASIL/diagnostic imaging , CADASIL/pathology , Stroke, Lacunar/pathology , Receptor, Notch3/genetics , Brain/diagnostic imaging , Brain/pathology , Migraine Disorders/pathology , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/etiology , Leukoencephalopathies/pathology , Magnetic Resonance Imaging
12.
Cancer Med ; 12(14): 15317-15336, 2023 07.
Article En | MEDLINE | ID: mdl-37326412

PURPOSE: Flap endonuclease 1 (FEN1) is highly upregulated in prostate cancer and promotes the growth of prostate cancer cells. Androgen receptor (AR) is the most critical determinant of the occurrence, progression, metastasis, and treatment of prostate cancer. However, the effect of FEN1 on docetaxel (DTX) sensitivity and the regulatory mechanisms of AR on FEN1 expression in prostate cancer need to be further studied. METHODS: Bioinformatics analyses were performed using data from the Cancer Genome Atlas and the Gene Expression Omnibus. Prostate cancer cell lines 22Rv1 and LNCaP were used. FEN1 siRNA, FEN1 overexpression plasmid, and AR siRNA were transfected into cells. Biomarker expression was evaluated by immunohistochemistry and Western blotting. Apoptosis and the cell cycle were explored using flow cytometry analysis. Luciferase reporter assay was performed to verify the target relationship. Xenograft assays were conducted using 22Rv1 cells to evaluate the in vivo conclusions. RESULTS: Overexpression of FEN1 inhibited cell apoptosis and cell cycle arrest in the S phase induced by DTX. AR knockdown enhanced DTX-induced cell apoptosis and cell cycle arrest at the S phase in prostate cancer cells, which was attenuated by FEN1 overexpression. In vivo experiments showed that overexpression of FEN1 significantly increased tumour growth and weakened the inhibitory effect of DTX on prostate tumour growth, while AR knockdown enhance the sensitivity of DTX to prostate tumour. AR knockdown resulted in FEN1, pho-ERK1/2, and pho-ELK1 downregulation, and the luciferase reporter assay confirmed that ELK1 can regulate the transcription of FEN1. CONCLUSION: Collectively, our studies demonstrate that AR knockdown improves the DTX sensitivity of prostate cancer cells by downregulating FEN1 through the ERK/ELK1 signalling pathway.


Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , MAP Kinase Signaling System , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Cell Proliferation , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Docetaxel/pharmacology , RNA, Small Interfering/metabolism , ets-Domain Protein Elk-1/genetics , ets-Domain Protein Elk-1/metabolism
14.
Article En | MEDLINE | ID: mdl-37027727

The refresh rate of virtual reality (VR) head-mounted displays (HMDs) has been growing rapidly in recent years because of the demand to provide higher frame rate content as it is often linked with a better experience. Today's HMDs come with different refresh rates ranging from 20Hz to 180Hz, which determines the actual maximum frame rate perceived by users' naked eyes. VR users and content developers often face a choice because having high frame rate content and the hardware that supports it comes with higher costs and other trade-offs (such as heavier and bulkier HMDs). Both VR users and developers can choose a suitable frame rate if they are aware of the benefits of different frame rates in user experience, performance, and simulator sickness (SS). To our knowledge, limited research on frame rate in VR HMDs is available. In this paper, we aim to fill this gap and report a study with two VR application scenarios that compared four of the most common and highest frame rates currently available (60, 90, 120, and 180 frames per second (fps)) to explore their effect on users' experience, performance, and SS symptoms. Our results show that 120fps is an important threshold for VR. After 120fps, users tend to feel lower SS symptoms without a significant negative effect on their experience. Higher frame rates (e.g., 120 and 180fps) can ensure better user performance than lower rates. Interestingly, we also found that at 60fps and when users are faced with fast-moving objects, they tend to adopt a strategy to compensate for the lack of visual details by predicting or filling the gaps to try to meet the performance needs. At higher fps, users do not need to follow this compensatory strategy to meet the fast response performance requirements.

15.
J Ginseng Res ; 47(2): 199-209, 2023 Mar.
Article En | MEDLINE | ID: mdl-36926612

BACKGROUND: Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia results in neuronal depolarization, insufficient NAD+, excessive levels of ROS, mitochondrial damages, and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy. Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection actions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy (TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo, treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury, alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated its related downstream SIRT1/2/3-MnSOD/PGC-1α pathways. Conclusion: The study finds that the mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1α signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and treating ischemic stroke.

16.
Biochem Mol Biol Educ ; 51(3): 263-275, 2023.
Article En | MEDLINE | ID: mdl-36951485

Presently, a variety of policies and measures has implemented to enhance the scientific research and innovation ability of medical students, but in the process of practice, there are many problems, such as they lack of independent topic selection ability, weak scientific research skills, lack of autonomous learning ability, the research results are simple and ineffective, limited teacher guidance time and so on. This paper attempted to build an effective model for the promotion of medical students' scientific research and innovation ability, in order to establish an efficacy evaluation model of the "Medical students' Innovative Scientific Research Program." Undergraduates, graduate assistants, and tutors were interviewed with the Behavioral Event Interview technique, and a questionnaire of efficacy evaluation characteristics concluded from the interviews was formed. The questionnaire was conducted on medical students in the Medical students' Innovative Scientific Research Program, and the constructed model was analyzed using reliability analysis, validity analysis, and variation analysis. At the same time, the experimental teaching models are summarized and combed, and compared with other methods such as independent sample test. The results show the model could effectively evaluate the efficacy of the Medical students' Innovative Scientific Research Program and its teaching model is effective in cultivating medical students' learning and scientific research ability. It can provide theoretical support and practical reference for the evaluation and reform of the teaching modes related to the cultivation of scientific and innovative ability of medical students.


Students, Medical , Humans , Reproducibility of Results , Learning , Biochemistry , Molecular Biology
17.
Chaos ; 33(1): 013110, 2023 Jan.
Article En | MEDLINE | ID: mdl-36725628

Social interactions have become more complicated and changeable under the influence of information technology revolution. We, thereby, propose a multi-layer activity-driven network with attractiveness considering the heterogeneity of activated individual edge numbers, which aims to explore the role of heterogeneous behaviors in the time-varying network. Specifically, three types of individual behaviors are introduced: (i) self-quarantine of infected individuals, (ii) safe social distancing between infected and susceptible individuals, and (iii) information spreading of aware individuals. Epidemic threshold is theoretically derived in terms of the microscopic Markov chain approach and the mean-field approach. The results demonstrate that performing self-quarantine and maintaining safe social distance can effectively raise the epidemic threshold and suppress the spread of diseases. Interestingly, individuals' activity and individuals' attractiveness have an equivalent effect on epidemic threshold under the same condition. In addition, a similar result can be obtained regardless of the activated individual edge numbers. The epidemic outbreak earlier in a situation of the stronger heterogeneity of activated individual edge numbers.


Epidemics , Humans , Disease Outbreaks , Quarantine , Markov Chains , Disease Susceptibility
18.
Cell Mol Neurobiol ; 43(5): 2325-2335, 2023 Jul.
Article En | MEDLINE | ID: mdl-36441266

AMP-activated protein kinase (AMPK) is a regulator of cellular energy metabolism. Long-term use of metformin, an AMPK activator, was previously reported to be neuroprotective, as it promotes behavioral improvement and angiogenesis following an acute ischemic injury of the brain. However, only a few studies have demonstrated the role of AMPK in alleviating chronic cerebral ischemia (CCI) in mice models in the long-term (over 3 months). Therefore, we established a mouse model of CCI via bilateral carotid artery stenosis (BCAS) to explore the effect of AMPK on CCI. We used four groups of 3-month-old male C57BL/6 mice labeled as Sham, BCAS, BCAS + metformin treatment (BCAS + Met) and BCAS + AMPKα2 gene knockout (BCAS + KO). Three months after BCAS, we measured the AMPK protein expression, spatial learning and memory, Nissl bodies, cell apoptosis, astrocyte activation, and oligodendrocyte maturation. Additionally, we observed the brain tissues for changes in cell morphology. We observed that mice in the BCAS group had impaired spatial learning and memory compared with those in the sham group. The brain tissues of mice with CCI injury showed altered cell morphology, fewer Nissl bodies, cerebral cells apoptosis, and astrocyte activation. Interestingly, compared with mice from the BCAS group, the brains of mice from BCAS + Met group suffered lesser damage, whereas those of mice from the BCAS + KO group suffered more damage. The activation of AMPK, especially AMPKα2, plays a neuroprotective role during CCI in a mouse model of BCAS.


Brain Ischemia , Carotid Stenosis , Metformin , Mice , Male , Animals , Carotid Stenosis/complications , AMP-Activated Protein Kinases , Mice, Inbred C57BL , Brain Ischemia/complications , Brain Ischemia/drug therapy , Disease Models, Animal
19.
J Transl Med ; 20(1): 622, 2022 12 27.
Article En | MEDLINE | ID: mdl-36572901

BACKGROUND: Mitochondrial autophagy maintains mitochondrial function and cellular homeostasis and plays a critical role in the pathological process of cerebral ischemia/reperfusion injury (CIRI). Whether Gypenoside XVII (GP17) has regulatory effects on mitochondrial autophagy against CIRI remains unclear. The purpose of this study was to investigate the pharmacodynamic effects and mechanisms of GP17 on mitochondrial autophagy after CIRI. METHODS: A rat middle cerebral artery occlusion/reperfusion (MCAO/R) model was used to assess the effects of GP17 against CIRI and to explore the underlying mechanisms. An oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was used to verify the ameliorative effects on mitochondrial damage and to probe the autophagy pathways involved in combating neural injuries. RESULTS: The in vivo results showed that GP17 significantly improved mitochondrial metabolic functions and suppressed cerebral ischemic injury, possibly via the autophagy pathway. Further research revealed that GP17 maintains moderate activation of autophagy under ischemic and OGD conditions, producing neuroprotective effects against CIRI, and that the regulation of mitochondrial autophagy is associated with crosstalk between the SIRT1-FOXO3A and Hif1a-BNIP3 signalling pathway that is partially eliminated by the specific inhibitors AGK-7 and 2-ME. CONCLUSION: Overall, this work offers new insights into the mechanisms by which GP17 protects against CIRI and highlights the potential of therapy with Notoginseng leaf triterpene compounds as a novel clinical strategy in humans.


Brain Ischemia , Reperfusion Injury , Humans , Rats , Animals , Sirtuin 1 , Reperfusion Injury/complications , Autophagy , Infarction, Middle Cerebral Artery/complications , Mitochondria/metabolism , Brain Ischemia/complications , Apoptosis , Membrane Proteins , Proto-Oncogene Proteins , Hypoxia-Inducible Factor 1, alpha Subunit
20.
Inorg Chem ; 61(45): 18260-18266, 2022 Nov 14.
Article En | MEDLINE | ID: mdl-36306531

A novel barium zinc borate contains π-conjugated [B3O6]3- anions and [B6O12]6- anion with edge-sharing BO4 tetrahedra, Ba6Zn6(B3O6)6(B6O12), has been successfully synthesized via a high-temperature solution reaction. In its structure, the isolated planar π-conjugated B3O6 groups are interconnected by ZnO4 tetrahedra via corner sharing to construct a [Zn3(B3O6)3]3- single layer parallel to the ab plane with the large Zn3B6 9-member rings. Two adjacent [Zn3(B3O6)3]3- single layers are interconnected by [B6O12]6- anions into a two-dimensional [Zn6(B3O6)6(B6O12)]12- double layer with 1D tunnels of Zn4B8 12-member rings along the a-axis. Neighboring such double layers are packed in an A-B-A-B... fashion along the c axis, and the Ba2+ ions act as counterbalance cations filling in the voids of double layers. All of the planar π-conjugated [B3O6]3- groups in Ba6Zn6(B3O6)6(B6O12) are in approximately parallel arrangement, producing large optical anisotropy and birefringence. The UV-vis-NIR absorption spectrum manifests that the UV cutoff edge for the title compound is below 200 nm. Ba6Zn6(B3O6)6(B6O12) possesses the largest birefringence (0.115@1064 nm) among the zincoborates reported. Its thermal stability, infrared spectrum, and theoretical calculations were also performed.

...