Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 195(3): 2176-2194, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38423969

RESUMEN

Leaf senescence is a combined response of plant cells stimulated by internal and external signals. Sugars acting as signaling molecules or energy metabolites can influence the progression of leaf senescence. Both sugar starvation and accumulation can promote leaf senescence with diverse mechanisms that are reported in different species. Sugars Will Eventually be Exported Transporters (SWEETs) are proposed to play essential roles in sugar transport, but whether they have roles in senescence and the corresponding mechanism are unclear. Here, we functionally characterized a sugar transporter, OsSWEET1b, which transports sugar and promotes senescence in rice (Oryza sativa L.). OsSWEET1b could import glucose and galactose when heterologously expressed in Xenopus oocytes and translocate glucose and galactose from the extracellular apoplast into the intracellular cytosol in rice. Loss of function of OsSWEET1b decreased glucose and galactose accumulation in leaves. ossweet1b mutants showed accelerated leaf senescence under natural and dark-induced conditions. Exogenous application of glucose and galactose complemented the defect of OsSWEET1b deletion-promoted senescence. Moreover, the senescence-activated transcription factor OsWRKY53, acting as a transcriptional repressor, genetically functions upstream of OsSWEET1b to suppress its expression. OsWRKY53-overexpressing plants had attenuated sugar accumulation, exhibiting a similar phenotype as the ossweet1b mutants. Our findings demonstrate that OsWRKY53 downregulates OsSWEET1b to impair its influx transport activity, leading to compromised sugar accumulation in the cytosol of rice leaves where sugar starvation promotes leaf senescence.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Hojas de la Planta , Proteínas de Plantas , Oryza/genética , Oryza/fisiología , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucosa/metabolismo , Senescencia de la Planta/genética , Galactosa/metabolismo , Azúcares/metabolismo , Eliminación de Gen , Transporte Biológico
3.
Mol Plant Pathol ; 24(12): 1535-1551, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776021

RESUMEN

Rice sheath blight (ShB) is a devastating disease that severely threatens rice production worldwide. Induction of cell death represents a key step during infection by the ShB pathogen Rhizoctonia solani. Nonetheless, the underlying mechanisms remain largely unclear. In the present study, we identified a rice transcription factor, OsERF65, that negatively regulates resistance to ShB by suppressing cell death. OsERF65 was significantly upregulated by R. solani infection in susceptible cultivar Lemont and was highly expressed in the leaf sheath. Overexpression of OsERF65 (OsERF65OE) decreased rice resistance, while the knockout mutant (oserf65) exhibited significantly increased resistance against ShB. The transcriptome assay revealed that OsERF65 repressed the expression of peroxidase genes after R. solani infection. The antioxidative enzyme activity was significantly increased in oserf65 plants but reduced in OsERF65OE plants. Consistently, hydrogen peroxide content was apparently reduced in oserf65 plants but accumulated in OsERF65OE plants. OsERF65 directly bound to the GCC box in the promoter regions of four peroxidase genes and suppressed their transcription, reducing the ability to scavenge reactive oxygen species (ROS). The oserf65 mutant exhibited a slight decrease in plant height but increased grain yield. Overall, our results revealed an undocumented role of OsERF65 that acts as a crucial regulator of rice resistance to R. solani and a potential target for improving both ShB resistance and rice yield.


Asunto(s)
Oryza , Factores de Transcripción , Factores de Transcripción/genética , Oryza/genética , Especies Reactivas de Oxígeno , Resistencia a la Enfermedad/genética , Peroxidasas , Enfermedades de las Plantas/genética , Rhizoctonia/fisiología
4.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902415

RESUMEN

Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Virulencia/genética , Magnaporthe/genética , Oryza/genética , Enfermedades de las Plantas/genética
5.
Sensors (Basel) ; 24(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202940

RESUMEN

The evolution of cameras and LiDAR has propelled the techniques and applications of three-dimensional (3D) reconstruction. However, due to inherent sensor limitations and environmental interference, the reconstruction process often entails significant texture noise, such as specular highlight, color inconsistency, and object occlusion. Traditional methodologies grapple to mitigate such noise, particularly in large-scale scenes, due to the voluminous data produced by imaging sensors. In response, this paper introduces an omnidirectional-sensor-system-based texture noise correction framework for large-scale scenes, which consists of three parts. Initially, we obtain a colored point cloud with luminance value through LiDAR points and RGB images organization. Next, we apply a voxel hashing algorithm during the geometry reconstruction to accelerate the computation speed and save the computer memory. Finally, we propose the key innovation of our paper, the frame-voting rendering and the neighbor-aided rendering mechanisms, which effectively eliminates the aforementioned texture noise. From the experimental results, the processing rate of one million points per second shows its real-time applicability, and the output figures of texture optimization exhibit a significant reduction in texture noise. These results indicate that our framework has advanced performance in correcting multiple texture noise in large-scale 3D reconstruction.

6.
Cell Rep ; 40(7): 111235, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977497

RESUMEN

Rice blast and bacterial blight, caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively, are devastating diseases affecting rice. Here, we report that a rice valine-glutamine (VQ) motif-containing protein, OsVQ25, balances broad-spectrum disease resistance and plant growth by interacting with a U-Box E3 ligase, OsPUB73, and a transcription factor, OsWRKY53. We show that OsPUB73 positively regulates rice resistance against M. oryzae and Xoo by interacting with and promoting OsVQ25 degradation via the 26S proteasome pathway. Knockout mutants of OsVQ25 exhibit enhanced resistance to both pathogens without a growth penalty. Furthermore, OsVQ25 interacts with and suppresses the transcriptional activity of OsWRKY53, a positive regulator of plant immunity. OsWRKY53 downstream defense-related genes and brassinosteroid signaling genes are upregulated in osvq25 mutants. Our findings reveal a ubiquitin E3 ligase-VQ protein-transcription factor module that fine-tunes plant immunity and growth at the transcriptional and posttranslational levels.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Magnaporthe/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Xanthomonas
7.
Mol Plant ; 15(4): 671-688, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-34968734

RESUMEN

MicroRNAs (miRNAs) play important roles in plant physiological activities. However, their roles and molecular mechanisms in boosting plant immunity, especially through the modulation of macronutrient metabolism in response to pathogens, are largely unknown. Here, we report that an evolutionarily conserved miRNA, miR395, promotes resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), two destructive bacterial pathogens, by regulating sulfate accumulation and distribution in rice. Specifically, miR395 targets and suppresses the expression of the ATP sulfurylase gene OsAPS1, which functions in sulfate assimilation, and two sulfate transporter genes, OsSULTR2;1 and OsSULTR2;2, which function in sulfate translocation, to promote sulfate accumulation, resulting in broad-spectrum resistance to bacterial pathogens in miR395-overexpressing plants. Genetic analysis revealed that miR395-triggered resistance is involved in both pathogen-associated molecular pattern-triggered immunity and R gene-mediated resistance. Moreover, we found that accumulated sulfate but not S-metabolites inhibits proliferation of pathogenic bacteria, revealing a sulfate-mediated antibacterial defense mechanism that differs from sulfur-induced resistance. Furthermore, compared with other bacteria, Xoo and Xoc, which lack the sulfate transporter CysZ, are sensitive to high levels of extracellular sulfate. Accordingly, miR395-regulated sulfate accumulation impaired the virulence of Xoo and Xoc by decreasing extracellular polysaccharide production and biofilm formation. Taken together, these results suggest that rice miR395 modulates sulfate metabolism to exploit pathogen sensitivity to sulfate and thereby promotes broad-spectrum resistance.


Asunto(s)
Oryza , Xanthomonas , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Sulfatos/metabolismo , Virulencia
8.
Plant Physiol ; 187(3): 1746-1761, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618083

RESUMEN

Plant cell walls are the first physical barrier against pathogen invasion, and plants thicken the cell wall to strengthen it and restrain pathogen infection. Bacterial blight is a devastating rice (Oryza sativa) disease caused by Xanthomonas oryzae pv. oryzae (Xoo), which typically enters the rice leaf through hydathodes and spreads throughout the plant via the xylem. Xoo interacts with cells surrounding the xylem vessel of a vascular bundle, but whether rice strengthens the sclerenchyma cell walls to stop pathogen proliferation is unclear. Here, we found that a WRKY protein, OsWRKY53, negatively confers resistance to Xoo by strengthening the sclerenchyma cell walls of the vascular bundle. OsMYB63 acts as a transcriptional activator and promotes the expression of three secondary cell wall-related cellulose synthase genes to boost cellulose accumulation, resulting in thickened sclerenchyma cell walls. Both OsWRKY53 and OsMYB63 are abundantly expressed in sclerenchyma cells of leaf vascular bundles. OsWRKY53 functions as a transcriptional repressor and acts genetically upstream of OsMYB63 to suppress its expression. The OsWRKY53-overexpressing and OsMYB63 knockout plants had thinner sclerenchyma cell walls, showing susceptibility to Xoo, while the OsWRKY53 knockout and OsMYB63-overexpressing plants had thicker sclerenchyma cell walls, exhibiting resistance to Xoo. These results suggest that modifying these candidate genes provides a strategy to improve rice resistance to bacterial pathogens.


Asunto(s)
Pared Celular/fisiología , Proteínas de Unión al ADN/genética , Oryza/fisiología , Células Vegetales/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Xanthomonas/fisiología , Secuencia de Bases , Proteínas de Unión al ADN/metabolismo , Resistencia a la Enfermedad , Técnicas de Inactivación de Genes , Oryza/genética , Oryza/microbiología , Proteínas de Plantas/metabolismo
9.
Rice (N Y) ; 14(1): 39, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33913048

RESUMEN

BACKGROUND: The plant-specific valine-glutamine (VQ) protein family with the conserved motif FxxxVQxLTG reportedly functions with the mitogen-activated protein kinase (MAPK) in plant immunity. However, the roles of VQ proteins in MAPK-mediated resistance to disease in rice remain largely unknown. RESULTS: In this study, two rice VQ proteins OsVQ14 and OsVQ32 were newly identified to function as the signaling components of a MAPK cascade, OsMPKK6-OsMPK4, to regulate rice resistance to Xanthomonas oryzae pv. oryzae (Xoo). Both OsVQ14 and OsVQ32 positively regulated rice resistance to Xoo. In vitro and in vivo studies revealed that OsVQ14 and OsVQ32 physically interacted with and were phosphorylated by OsMPK4. OsMPK4 was highly phosphorylated in transgenic plants overexpressing OsMPKK6, which showed enhanced resistance to Xoo. Meanwhile, phosphorylated OsVQ14 and OsVQ32 were also markedly accumulated in OsMPKK6-overexpressing transgenic plants. CONCLUSIONS: We discovered that OsVQ14 and OsVQ32 functioned as substrates of the OsMPKK6-OsMPK4 cascade to enhance rice resistance to Xoo, thereby defining a more complete signal transduction pathway for induced defenses.

10.
Front Plant Sci ; 12: 816156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154213

RESUMEN

Abscisic acid (ABA) largely promotes leaf senescence and inhibits seed germination in plants. Endogenous ABA content is finely tuned by many transcription factors. In this study, we showed that OsWRKY53 is a positive regulator of leaf senescence and a negative regulator of seed germination in rice. OsWRKY53 expression was induced in leaves under aging, dark, and ABA treatment. The OsWRKY53-overexpressing (OsWRKY53-oe) plants showed early yellowing leaves, while the OsWRKY53 (oswrky53) knockout mutants maintained green leaves than the wild type under natural, dark-induced, and ABA-induced senescence conditions. Transcriptional analysis revealed that ABA catabolic genes, namely, OsABA8ox1 and OsABA8ox2, two key genes participating in ABA catabolism harboring ABA 8'-hydroxylase activity, were markedly downregulated in OsWRKY53-oe leaves. Chromatin immunoprecipitation and protoplast transient assays revealed that OsWRKY53 directly bound to the promoters of OsABA8ox1 and OsABA8ox2 to repress their transcription, resulting in elevated endogenous ABA contents that promoted premature leaf senescence in the OsWRKY53-oe plants. It indicates that OsWRKY53 is a positive regulator through regulating ABA accumulation to promote leaf senescence. In addition, accumulated ABA simultaneously inhibited seed germination and post-germination growth in OsWRKY53-oe plants. Taken together, OsWRKY53 suppresses the transcript of ABA catabolic genes to promote ABA accumulation to modulate ABA-induced leaf senescence and ABA-mediated inhibition of seed germination.

11.
PLoS One ; 14(12): e0226344, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31805152

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0220310.].

12.
PLoS One ; 14(7): e0220310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31365569

RESUMEN

With rapid economic development, the prevalence of obesity has increased remarkably worldwide. Obesity can induce a variety of metabolic diseases, such as atherosclerosis, diabetes, hypertension and coronary heart disease, which significantly endanger the health and welfare of individuals. Brown and beige fat tissues play an important role in thermogenesis in mammals. Recent studies have shown that follistatin (FST) can potentially induce the browning of white adipose tissue (WAT). In this study, high-fat diet-induced obese mice were injected with follistatin for one week to explore the effects of follistatin on browning and metabolism and to determine the mechanism. The results showed that follistatin suppressed obesity caused by a high-fat diet and increased insulin sensitivity, energy expenditure, and subcutaneous fat browning. The beneficial effects remained even after a period of withdrawal. Follistatin promoted secretion of irisin from subcutaneous fat via the AMPK-PGC1α-irisin signal pathway, which induces browning of WAT, and activated the insulin pathway in beige fat thereby promoting metabolism.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Dieta Alta en Grasa , Folistatina/farmacología , Obesidad/patología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Fibronectinas/metabolismo , Prueba de Tolerancia a la Glucosa , Inyecciones Intraperitoneales , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Sci China Life Sci ; 60(3): 298-306, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28251460

RESUMEN

Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most harmful bacterial disease of rice worldwide. Previously, we characterized major disease resistance (MR) gene xa25, which confers race-specific resistance to Xoo strain PXO339. The xa25 is a recessive allele of the SWEET13 locus, but SWEET13's interaction with PXO339 and how efficiently using this locus for rice breeding still need to be defined. Here we show that the SWEET13 allele from rice Zhenshan 97 is a susceptibility gene to PXO339. Using this allele's promoter to regulate xa25 resulted in disease, suggesting that the promoter is a key determinant in SWEET13 caused disease in Zhanshan 97 after PXO339 infection. PXO339 transcriptionally induces SWEET13 to cause disease. Partial suppressing SWEET13 expression leads to a high level of resistance to PXO339. Thus, the transcriptionally suppressed SWEET13 functions as xa25 in resistance to PXO339. Hybrid rice is widely grown in many countries. However, recessive MR genes have not been efficiently used for disease resistance breeding in hybrid rice production for both parents of the hybrid have to carry the same recessive gene. However, the suppressed SWEET13 functions dominantly, which will have advantage to improve the resistance of hybrid rice to xa25-incomptible Xoo.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Oryza/genética , Enfermedades de las Plantas/genética , Xanthomonas , Alelos , Regulación de la Expresión Génica de las Plantas , Genes Dominantes , Genes Recesivos , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Regiones Promotoras Genéticas
14.
Nat Plants ; 3: 17009, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211849

RESUMEN

The major disease resistance gene Xa4 confers race-specific durable resistance against Xanthomonas oryzae pv. oryzae, which causes the most damaging bacterial disease in rice worldwide. Although Xa4 has been one of the most widely exploited resistance genes in rice production worldwide, its molecular nature remains unknown. Here we show that Xa4, encoding a cell wall-associated kinase, improves multiple traits of agronomic importance without compromising grain yield by strengthening the cell wall via promoting cellulose synthesis and suppressing cell wall loosening. Strengthening of the cell wall by Xa4 enhances resistance to bacterial infection, and also increases mechanical strength of the culm with slightly reduced plant height, which may improve lodging resistance of the rice plant. The simultaneous improvement of multiple agronomic traits conferred by Xa4 may account for its widespread and lasting utilization in rice breeding programmes globally.


Asunto(s)
Resistencia a la Enfermedad , Oryza/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/genética , Xanthomonas/fisiología , Pared Celular/fisiología , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA